Spatial transcriptomics 2

Sequence-based high resolution

- -Visium & GeoMx: full transcriptome → but low spatial resolution
- -Probe-base (MerFish, Cosmx, Xenium): high spatial resolution → poor coverage
- -Slide-seq v2, Stereo-seq → full transcriptome + subcellular level

Stereo-seq

Stereo-seq

Stereo-seq

0.22

0.5

0.5

- Sequence-based high resolution
- -FASTQ (read file + index file: spot coordinate)
- -Alignment: STAR
- → Count matrix

- -Slide-seq v2: 10um → ~ 1 cell size
- -Stereo-seq: 10um: 400 transcriptome bulb)

SlideCNA

- -InferCNV + Spatial
- -Sparsity → averaging neighbor spots → InferCNV

Slide-tag

-Spot-based → anyway, it is not exactly the cell

Slide-tag

- -Bead on the Barcode
- → Photoreactive diffusion
- → Each cell (specificity)

→ Similar to scRNA-seq

Cell segmentation (Cellpose)

nature methods

Explore content > About the journal > Publish with us >

nature > nature methods > articles > article

Article Published: 14 December 2020

Cellpose: a generalist algorithm for cellular segmentation

Carsen Stringer, Tim Wang, Michalis Michaelos & Marius Pachitariu

Nature Methods 18, 100-106 (2021) Cite this article

50k Accesses | **453** Citations | **157** Altmetric | Metrics

Training

- -Draw cell boundary manually
- -Gradient diffusion from many angle
- -Neural network

Cf) Cosmx

Cell segmentation (Baysor)

- -Location of transcript
- + nucleus or surface marker information (optional)
- *assumption
- -transcripts are grouped within each cell
- -each cell has unique profile
- -Unique distribution of transcript in each cell
- → Markov Random Field (MRF) → grouping transcript nearby
- → Bayesian inference → distinguish the group of transcripts into a cell
- → Expectation-maximization: optimization

Cell segmentation (for H&E staining)

Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images

Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features

Cell segmentation (Surface marker-based)

Batch correction

	Batch correction				Bio metrics						Aggregate score		
Method	Graph connectivity	KBET	L I SI batch	Silhouette batch	LISI label	Leiden AR I	Leiden NMI	Silhouette label		mAP (nonrep)	Batch correction	Bio metrics	Overall
Seurat CCA	0.35	0.13	0.49	0.85	1.00	0.01	0.25	0.31	0.27	0.07	0.46	0.32	0.37
Scanorama	0.34	0.14	0.42	0.83	1.00	0.01	0.29	0.27	0.23	0.05	0.43	0.31	0.36
Seurat RPC	0.35	0.10	0.31	0.84	1.00	0.02	0.28	0.31	0.27	0.06	0.40	0.32	0.35
fastMNN	0.34	0.08	0.45	0.79	1.00	0.01	0.25	0.22	0.26	0.07	0.42	0.30	0.35
Harmony	0.34	0.03	0.25	0.84	1.00	0.02	0.28	0.32	0.26	0.05	0.36	0.32	0.34
scVI	0.34	0.04	0.23	0.77	1.00	0.01	0.28	0.25	0.24	0.05	0.34	0.30	0.32
Sphering	0.34	0.01	0.00	0.84	1.00	0.00	0.21	0.38	0.22	0.03	0.30	0.31	0.30
Combat	0.34	0.01	0.02	0.81	1.00	0.00	0.24	0.31	0.24	0.04	0.30	0.30	0.30
MNN	0.34	0.03	0.01	0.81	1.00	0.00	0.23	0.31	0.22	0.04	0.29	0.30	0.30
Baseline	0.34	0.01	0.01	0.80	1.00	0.00	0.23	0.31	0.21	0.03	0.29	0.30	0.29
DESC	0.33	0.01	0.27	0.58	1.00	0.02	0.34	0.01	0.22	0.04	0.30	0.27	0.28
B Seurat CCA	Scanorama	Seurat	RPCA	Harmony	fastMNN	scVI		MNN	Combat	Baseli	ne Sp	hering	DESC
Source										-	* ¥		W
Microscope d		-					•			4	* ¥	No.	W

Batch correction (SpaBatch)

SpaBatch: Batch Alignment of Spatial Transcriptomics Data using Graph Deep Learning

Consecutive slide (STalign)

Consecutive slide

- Spatial cluster (or Neighborhood analysis)
- -Clustering: gene expression only → add spatial information
- -Which cells are close to each other?
- -Neighborhood analysis → information of local domain
- -Spatial cluster → global domain

Spatial cluster (KNN-neighbor)

- -Provided from Seurat
- -Group by similar neighborhood profile
- -KNN for each cell
- -K-mean clustering by KNN
- → Similar neighbors → same group → spatial cluster

Spatial cluster (BANKSY)

- -Gene expression clustering
- + Mean exp from local neighborhood
- + AGF (azimuthal Gabor filter) (expression gradient)

Spatial cluster (NeST)

nature communications

Article https://doi.org/10.1038/s41467-023-42343-x

NeST: nested hierarchical structure identification in spatial transcriptomic data

c Computation of Coexpression Hotspots

1. Compute single-gene expression hotspots across full transcriptome

a. Binarize Expression

b. Density-based clustering produces localized hotspots of enriched expression

Ngn Sxbp6

- 1:Binarize each gene by expression for each spot 2:cluster (DBSCAN) each spot by binarized gene exp → hotspot
- 3: hotspot overlap between different genes (jaccard) by location
- → Which genes have a high similarity (of hotspot spatial structure)
- → (gene-gene) Network → leiden clustering
- → community detection (coexpression)
- → Various structure!
- Could be extended to cell-cell interaction score

Spatial cluster (SpaGCN)

- -Node: each cell
- -Node weight: gene expression
- -Graph (edge)→ spatial location
- → Graph convolutional network (GCN)
- → Modified gene expression (aggregated)
- → Clustering

Spatial cluster (STAGATE)

- -VAE-based
- -Gene expression → GAN by local neighbor
- *use pre-clustering result
- → Use latent space for clustering (ex: Louvain)

Spatial cluster (CellCharter)

- -VAE-based
- -Gene expression → weighted-graph by local neighbor
- → Clustering by GMM (Gaussian mixture model)

Spatial cluster (SpatialPCA)

-PCA-based → Singular value decomposition

Tissue location → distance kernel (spatially correlated information)

Gene exp = W * Z + E (error)

Z: sampling from N(0, kernel) \rightarrow latent space \rightarrow clustering ...

Spatial cluster (GASTON)

(a) Generated segmentation regions and wireframe with colored edge distance for tooth regions

- -Topological gradient
- → Gene expression difference → gradient

Spatial cluster (GASTON)

Cell-Cell interaction

-scRNA-seq: based on gene expression

Cell-Cell interaction

- -Spatial constraint → distance should be a "cost" Why?
- → Signaling strength ~ Binding affinity
- → Binding affinity ~ ligand concentration
- → Ligand concentration (at the receptor) ~ Diffusion ~ distance

Short-distance: stronger

Long distance: weaker

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-020-15968-5

OPEN

Inferring spatial and signaling relationships between cells from single cell transcriptomic data

Zixuan Cang © 1,3 & Qing Nie © 1,2,3 ⊠

nature methods

Article https://doi.org/10.1038

Screening cell-cell communication in spatial transcriptomics via collective optimal transport

- *Optimal transport-based
- -C(x,y): cost function to move $x \rightarrow y$
- -KL-divergence: compare the distribution between x and y
- -Wasserstein distance between distributions

$$\min_{T} \int_{X \times Y} c(x, y) \, dT(x, y)$$

Fig. 1 Overview of SpaOTsc. a The unbalanced transport relaxes the mass conservation constraint (e.g. lines between circles), and the structured transport utilizes additional information (e.g. dotted links) to refine the mapping (e.g. blue hexagon). b Cell-cell distance is inferred by computing optimal transport distance of the spatial probability distributions of cells (rows of γ in a). c Calculated cell-cell distance, along with partial information decomposition and random forest models, is used to infer spatial distance of signaling and then construct space-constrained cell-cell communications and identify potential intercellular regulation between genes.

$$\underset{\boldsymbol{\gamma} \in \mathbb{R}_{+}^{n \times m}}{\operatorname{argmin}} \left[(1 - \alpha) < \boldsymbol{\gamma}, \mathbf{M} >_{F} \right. \\ + \rho \left(KL(\boldsymbol{\gamma} \mathbf{1}^{m} | \boldsymbol{\omega}_{1}) + KL(\boldsymbol{\gamma}^{T} \mathbf{1}^{n} | \boldsymbol{\omega}_{2}) \right) \\ + \alpha \sum_{i,j,k,l} L(\mathbf{D}_{sc}(i,k), \mathbf{D}_{spa}(j,l)) \boldsymbol{\gamma}_{i,j} \boldsymbol{\gamma}_{k,l} \right]$$

*minimize cost function (ligand → receptor)

$$\underset{\boldsymbol{\gamma} \in \mathbb{R}_{+}^{n \times n}}{\operatorname{argmin}} < \boldsymbol{\gamma}, \widehat{\mathbf{D}}_{sc} >_{F} + \rho \big(KL(\boldsymbol{\gamma} \mathbf{1}^{n} | \boldsymbol{\omega}_{L}) + KL(\boldsymbol{\gamma}^{T} \mathbf{1}^{n} | \boldsymbol{\omega}_{D}) \big).$$

-D: distance

-KL: penalty if the distribution between ligand and receptor are too different

-Competition between different ligands

$$\min_{\boldsymbol{P} \in \Gamma} \sum_{(i,j) \in I} \langle \boldsymbol{P}_{i,j,\cdot,\cdot}, \boldsymbol{C}_{(i,j)} \rangle_F + \sum_i F(\mu_i) + \sum_j F(\nu_j),$$

$$\Gamma = \left\{ \boldsymbol{P} \in \mathbb{R}_+^{n_l \times n_r \times n_s \times n_s} : \boldsymbol{P}_{i,j,\cdot,\cdot} = \boldsymbol{0} \text{ for } (i,j) \notin I, \sum_{j,l} \boldsymbol{P}_{i,j,k,l} \leq \boldsymbol{X}_{i,k}^L, \sum_{i,k} \boldsymbol{P}_{i,j,k,l} \leq \boldsymbol{X}_{j,l}^R \right\},$$

$$\mu_i(k) = \boldsymbol{X}_{i,k}^L - \sum_{j,l} \boldsymbol{P}_{i,j,k,l}, \ \nu_j(l) = \boldsymbol{X}_{j,l}^R - \sum_{i,k} \boldsymbol{P}_{i,j,k,l}$$

-Optimal transport plan: multi ligand-receptor coupling (C == Dsc) F: i,k (ligand) – coupling (P:J,L) → untransported term Total sum **receiver** P < **ligand** K spot

HoloNet

- -Multi-view graph model
- -Each graph (GCN): cell-cell interaction
- -Multi-view: Different interactions
- -which has higher weight

Trajectory analysis (stLearn)

- -Gene expression-based trajectory method
- -Root cell (spot): user-defined or CytoTrace
- -PAGA graph by gene exp + proximity

Trajectory analysis (TopoVelo)

- -RNA-velocity-based (splicing ratio)
- -Borrow information from neighboring cells (influence each other)

Trajectory analysis (TopoVelo)

- -VAE architecture
- -Each cell (splicing ratio; u & s)
- -GNN (graph input); edge: spatial proximity
- -ρ: transcriptional rate
- -t: time (we want this)
- -ω: gene phase (\rightarrow for splicing level)
- \rightarrow training: reconstruct "u & s" by ρ , t, ω

-Differentiation equation for splicing

Trajectory analysis (TopoVelo)

Other modalities

-CODEX (Akoya) → ~100 protein

Cycle 2

Cycle I

Cycle 3

Cycle 4

Cycle 16+

Other modalities

- -Spatial CyTOF (Mass spectrometry)
- -Protein (~40 ??)
- -Antibody-tagged metal → photo cleavage → TOF

- Other modalities
- -Spatial genomics
- -DNA → CNA, SNV (clonotyping) → evolutionary analysis

Other modalities

- -Perturbation
- -CRISPR-screening → with spatial barcode
- -Neighborhood analysis of different gene KO

TGFBR KO of cancer

→ Activated stroma cell + low T cell infiltration

