
Spatial transcriptomics 2



• Sequence-based high resolution
-Visium & GeoMx: full transcriptome → but low spatial resolution

-Probe-base (MerFish, Cosmx, Xenium): high spatial resolution → poor coverage

-Slide-seq v2, Stereo-seq → full transcriptome + subcellular level



• Stereo-seq



• Stereo-seq



• Sequence-based high resolution

-FASTQ (read file + index file: spot coordinate)

-Alignment: STAR

→ Count matrix

-Slide-seq v2: 10um → ~ 1 cell size

-Stereo-seq: 10um: 400 transcriptome bulb)



• SlideCNA

-InferCNV + Spatial

-Sparsity → averaging neighbor spots → InferCNV



• Slide-tag

-Spot-based → anyway, it is not exactly the cell



• Slide-tag

-Bead on the Barcode 

→ Photoreactive diffusion

→ Each cell (specificity)

→ 10x platform

Caveat !

→ Similar to scRNA-seq

→ Drop-out ↑



• Cell segmentation (Cellpose)

Training

-Draw cell boundary manually

-Gradient diffusion from many angle

-Neural network

Cf) Cosmx



• Cell segmentation (Baysor)

-Location of transcript

+ nucleus or surface marker information (optional)

*assumption

-transcripts are grouped within each cell

-each cell has unique profile

-Unique distribution of transcript in each cell

→ Markov Random Field (MRF) → grouping 

transcript nearby

→ Bayesian inference → distinguish the group of 

transcripts into a cell

→ Expectation-maximization: optimization

Cell segmentation in imaging-based spatial transcriptomics



• Cell segmentation (for H&E staining)

Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard
Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images
Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features



• Cell segmentation (Surface marker-based)

CelloType: a unified model for segmentation and classification of tissue images



• Batch correction



• Batch correction (SpaBatch)

SpaBatch: Batch Alignment of Spatial Transcriptomics Data using Graph Deep Learning



• Consecutive slide (STalign)



• Consecutive slide

Benchmarking clustering, alignment, and integration methods for spatial transcriptomics



• Spatial cluster (or Neighborhood analysis)

-Clustering: gene expression only → add spatial information

-Which cells are close to each other?

-Neighborhood analysis → information of local domain

-Spatial cluster → global domain



• Spatial cluster (KNN-neighbor)

-Provided from Seurat

-Group by similar neighborhood profile

-KNN for each cell

-K-mean clustering by KNN

→ Similar neighbors → same group → spatial cluster

Neighbors



• Spatial cluster (BANKSY)

-Gene expression clustering

+ Mean exp from local neighborhood

+ AGF (azimuthal Gabor filter) 

(expression gradient)



1:Binarize each gene by expression for each spot

2:cluster (DBSCAN) each spot by binarized gene 

exp → hotspot

3: hotspot overlap between different genes 

(jaccard) by location

→ Which genes have a high similarity (of hotspot 

spatial structure)

→ (gene-gene) Network → leiden clustering 

→ community detection (coexpression)

→ Various structure!

- Could be extended to cell-cell interaction score

• Spatial cluster (NeST)



• Spatial cluster (SpaGCN)

-Node: each cell

-Node weight: gene expression

-Graph (edge)→ spatial location 

→ Graph convolutional network (GCN)

→ Modified gene expression (aggregated)

→ Clustering 



• Spatial cluster (STAGATE)

-VAE-based

-Gene expression → GAN by local neighbor

*use pre-clustering result

→ Use latent space for clustering (ex: Louvain)



• Spatial cluster (CellCharter)

-VAE-based

-Gene expression → weighted-graph by local neighbor

→ Clustering by GMM (Gaussian mixture model)



• Spatial cluster (SpatialPCA)

-PCA-based → Singular value decomposition

Tissue location → distance kernel (spatially correlated information)

Gene exp = W * Z + E (error)

Z: sampling from N(0, kernel) → latent space → clustering …   



• Spatial cluster (GASTON)

-Topological gradient

→ Gene expression difference → gradient



• Spatial cluster (GASTON)



• Cell-Cell interaction

-scRNA-seq: based on gene expression



• Cell-Cell interaction

-Spatial constraint → distance should be a “cost”

Why? 

→ Signaling strength ~ Binding affinity

→ Binding affinity ~ ligand concentration

→ Ligand concentration (at the receptor) ~ Diffusion ~ distance



• COMMOT

*Optimal transport-based
-C(x,y): cost function to move x → y
 -KL-divergence: compare the distribution between
 x and y
-Wasserstein distance between distributions



• COMMOT

*minimize cost function

(ligand → receptor)

-D: distance

-KL: penalty if the distribution between ligand 

and receptor are too different



• COMMOT

-Competition between different ligands

-Optimal transport plan: multi ligand-receptor coupling (C == Dsc)

F: i,k (ligand) – coupling (P:J,L) → untransported term

Total sum receiver P < ligand K spot



• COMMOT

Competition with L1



• HoloNet

-Multi-view graph model

-Each graph (GCN): cell-cell interaction

-Multi-view: Different interactions

-which has higher weight



• Trajectory analysis (stLearn)

-Gene expression-based trajectory method

-Root cell (spot): user-defined or CytoTrace

-PAGA graph by gene exp + proximity



• Trajectory analysis (TopoVelo)

-RNA-velocity-based (splicing ratio)

-Borrow information from neighboring cells (influence each other)



• Trajectory analysis (TopoVelo)

-VAE architecture

-Each cell (splicing ratio; u & s)

-GNN (graph input); edge: spatial proximity

-ρ: transcriptional rate

-t: time (we want this)

-ω: gene phase (→ for splicing level)

→ training: reconstruct “u & s” by ρ, t, ω

-Differentiation equation for splicing



• Trajectory analysis (TopoVelo)



• Other modalities

-CODEX (Akoya) → ~100 protein



• Other modalities

-Spatial CyTOF (Mass spectrometry)

-Protein (~40 ??)

-Antibody-tagged metal → photo cleavage → TOF



• Other modalities

-Spatial genomics

-DNA → CNA, SNV (clonotyping) → evolutionary analysis

Spatial genomics enables multi-modal study of clonal heterogeneity in tissues



• Other modalities

-Perturbation

-CRISPR-screening → with spatial barcode

-Neighborhood analysis of different gene KO

TGFBR KO of cancer

→ Activated stroma cell + low T cell infiltration

Spatial CRISPR genomics identifies regulators of the tumor microenvironment
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