Bulk RNA-sequencing

Data acquisition

High throughput data

High throughput data

Whole transcriptome

RNA-sequencing

RNA-sequencing

- Raw mRNA
- RNA fragment chopping
- Reverse transcriptase
- Adaptors → Obtain the sequence

Read (single-end) (100 ~ 200 bp) Or

Fragment (paired-end): high confidence

RNA-sequencing

Data format: fastq file

Fastq file → somehow **gene by count** matrix (it could also be a transcript or isoform)

1) Alignment (ex: **STAR** → Genome, Kallisto → Transcriptome) - Each reads → where in the genome Splicing event Reference genome-Biological samples/Library preparation Sequence reads **FASTQC** reference genome Reads **Adapter Trimming** (Optional) SNP Splice-aware mapping to genome Counting reads associated with genes Statistical analysis to identify differentially expressed genes reference genome

- Genome: different genome assembly version Human: GRCh37.## (hg19), GRCh38.## (hg38)

Mouse: GRCm38, GRCm39

Different versions cannot be used together

- → Different nucleotide locus
- → Same genome build but different version (or release): compatible with each other (mostly gap-filling)

- Human genome size: 3.1 Gbase pairs, Mouse genome size: 2.7Gbp → mapping is not trivial Genome building: Making a dictionary for boosting the mapping time

Output: SAM or BAM file (BAM: binary file)

Started job on	Jul 17 20:54:45
Started mapping on	Jul 17 20:55:04
Finished on	Jul 17 21:06:18
Mapping speed, Million of reads per hour	160.92
Number of input reads	30128333
Average input read length	202
UNIQUE READS:	
Uniquely mappe <mark>d reads number </mark>	27974985
Uniquely napped reads %	92.85%
Average mapped length	201.55
Number of splices: Total	22952060
Number of splices: Annotated (sjdb)	22816849
Number of splices: GT/AG	22776111
Number of splices: GC/AG	145758
Number of splices: AT/AC	18027
Number of splices: Non-canonical	12164
Mismatch rate per base, %	0.17%
Deletion rate per base	0.01%
Deletion average length	1.92
Insertion rate per base	0.01%
Insertion average length	1.50
MULTI-MAPPING READS:	
Number of reads mapped to multiple loci	1262485
% of reads mapped to multiple loci	4.19%
Number of reads mapped to too many loci	10600
% of reads mapped to too many loci	0.04%
UNMAPPED READS:	
Number of reads unmapped: too many mismatches	Θ
% of reads unmapped: too many mismatches	0.00%
Number of reads unmapped: too short	874728
% of reads unmapped: too short	2.90%
Number of reads unmapped: other	5535
% of reads unmapped: other	0.02%
CHIMERIC READS:	
Number of chimeric reads	Θ
% of chimeric reads	0.00%
·	

Unique mapped read → what we use for data analysis What are other reads?

Long read: High specificity → won't map to other regions Ex): PacBio; high error rate

M Short read: M

Short read: Multiple mapping to many regions

RNA-sequencing (Quantification)

- Mapped reads → count matrix (per gene)
 Counting reads mapped to a given gene
 Ex) FeatureCounts (gene), Kallisto (transcript)

	Cell1	Cell2	 CellN
Gene1	3	2	13
Gene2	2	3	1
Gene3	1	14	18
•••			
GeneM	25	0	0

Mapped reads → count matrix (per isoform)
 Unique exon count, EM (expectation maximization)
 algorithm

Ex) RSEM or longread sequencing

RNA-sequencing (Kallisto; Alignment)

Kallisto: align to transcriptome (less reference size compared to the genome) → super fast

- -black line: read (fragment)
- -pink, blue, green: potential transcript (from the reference)
- -de Bruijn graph (T-DBG) formation
- -O: k-mer (hashed by indexing → fast search)
- compatible node between read and the reference
- d: first search: v1 → skip until v4 (non-overlapping)
- → fast search
- → Align only to the possible transcripts

RNA-sequencing (Kallisto; Quantification)

Quantification: Expectation Maximization (EM) algorithm

→ Find a variable to maximize the Likelihood → first-derivative = 0

$$L(\alpha) \propto \prod_{f \in F} \sum_{t \in T} \mathbf{y}_{f,t} \frac{\alpha_t}{l_t} = \prod_{e \in E} \left(\sum_{t \in e} \frac{\alpha_t}{l_t} \right)^{c_e}$$

L(a): likelihood function for the alignment

a: probability of selecting fragments from transcripts

I: effective transcript length

F: set of read

T: set of transcript (reference)

Y: alignment matrix (above slide): 0 or 1

C: number of counts from equivalence class (of k-mer) e

→ What is the a to maximize L(a)?

- RNA-sequencing (Normalization)
- Why?
- 1) Gene length normalization: Different probability of "read" capture rate during sequencing
- → longer gene has a higher chance of being mapped

2) Total read count (= read-depth) normalization: Adjust read-depth between different samples

Should be the same

3) RPKM (Reads Per Kilobase per Millions mapped reads), FPKM (Fragment), TPM (Transcrpit)

$$\mathsf{RPKM} = \frac{\mathsf{Total\ fragments}}{\mathsf{Mapped\ reads\ (millions)\ *\ exon\ length\ (KB)}} = \frac{\mathsf{Number\ of\ reads\ of\ the\ region}}{\mathsf{Total\ reads}} \times \frac{\mathsf{Region\ length}}{\mathsf{1,000,000}} \times \frac{\mathsf{Region\ length}}{\mathsf{1,000,000}}$$

TPM: Total reads normalization → total read after gene length normalization

RNA-sequencing (Batch correction)

- Why?
Same sample → but, a technical confounding effect
(My experiment and your experiment should be the same!)

*Limma: linear regression-based, Combat: negative binomial distribution, DESeq2: scaling factors

PCA (principal component analysis)

- Find a PC axis to maximize the variance of the data \rightarrow Distribute samples to maximize the variance

- Number of PC == Number of features or <= sample size
- → Usually, we have more features (~20k)
- → Each PCs: explain the variance of the data
- → Using only a few PCs: Dimension reduction

Advantage: among confounding effects, noise, we can solely capture the biological difference

(or meaningful information)

+ data representation & visualization (20K genes → 2 PCs)

Clustering

Distance measurement for clustering

Euclidean distance (a <u>straight line</u> distance in *n*-dimensional space)

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$d = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2}$$
, if you don't more dimensions

 $d = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (x_i - y_i)^2$, if you don't want to increase the distance with the addition of more dimensions.

- Euclidean distances may underestimate join differences such as differences in two correlated expression .
- Therefore, use Euclidean distance if you believe that your dimensions (variables) are not independent.
- **Manhattan distance** (= city block distance, L1 distance, rectilinear distance, taxicab metric): distances measured parallel to dimensional axes. After NY city's grid like street pattern.

$$d = \sum_{i=1}^{n} \left| x_i - y_i \right|$$

$$d = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|$$

 $d = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|$, if you don't want to increase the distance with the addition of more dimensions.

Gene expression space

i: each gene

n: the number of genes

Clustering

K-mean clustering

K-mean clustering (linear approach)

Algorithm

- 1. Initial k: Decide the number of cluster (k)
- Initial value of centroids: Choose k centroids randomly.
- Objects-centroids distance: Calculate the distance between cluster centroid to each object (with any distance metric).
- Objects clustering: Assign each object based on minimum distance.
- Determine new centroids: New centroid moves to mean value of all member objects.
- Iterate steps 3-5: Until no object change centroid membership.

K-mean clustering

Demonstration

Diamond: object Star: centroid (*k*=2)

Hierarchical clustering

Algorithm

- Initialize each single gene as a cluster
- The pairwise distance matrix is calculated for all of the genes to be clustered.
- The distance matrix is searched for the two most similar genes or clusters.
- The two selected clusters are merged to produce a new cluster that now contains at least two objects.
- The distances are calculated between this new cluster and all other clusters. There is no need to calculate all distances as only those involving the new cluster have changed.
- Steps 3-5 are repeated until all objects are in one cluster.

Hierarchical clustering

Tree cutting

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- Clustering algorithm that divides a dataset into <u>subgroups of high density regions</u>.
- <u>Two parameters</u> required for DBSCAN:
 - Epsilon (ε): a distance parameter that <u>defines the radius to search for nearby neighbors</u>
 - MinPts: minimum number of other points required to form a cluster
- Core point a point that has at least the minPts of other points within its ε radius.
- Border point a point within the ε radius of a core point BUT has less than the minPts within
 its own ε radius
- Noise point a point that is neither a core point or a border point

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- Each core point forms a cluster together with the points that are reachable within its ε radius.
- Two points are considered "<u>directly density-reachable</u>" if one of the points is a core point and the other point is within its ε radius.
- <u>Larger clusters</u> are formed <u>when directly density-reachable points are chained together.</u>
- In the example image below, there are two clusters:

- If minPts = 3, p is directly density-reachable from m, which is directly density-reachable from q.
 The sets of points within the ε radius of p → m → q form one cluster
- **2. r** and **s** are indirectly density-reachable through a path of 4 core points. The set of points within the **ε** radius of this chain forms another cluster.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- The DBSCAN algorithm <u>repeats the following process until all points have been assigned</u> to a cluster or are labeled as visited:
 - Arbitrarily select a point P.
 - 2. Retrieve all points directly density-reachable from P with respect to ε.
 - 3. If P is a core point, a cluster is formed. Find recursively all its density connected points and assign them to the same cluster as P.
 - If P is not a core point, DBSCAN iterates through the remaining unvisited points in the dataset.
- DBSCAN does not require us to specify the number of clusters.
- It can <u>handle clusters of arbitrarily shapes and sizes.</u>
- It is robust to noise.

• DEG (Differentially expressed gene) analysis

-Which gene is expressing differently between two groups

DEG (Differentially expressed gene) analysis

-DESeq2: Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the <u>negative binomial distribution</u>

DEG (Differentially expressed gene) analysis

	baseMean	log2FoldChange	IfcSE	stat	pvalue	padj
VCAM1	4566.645595	1.938889067	0.119610186	16.21006642	4.28E-59	5.89E-55
TNFAIP3	1099.976807	1.84009256	0.126618591	14.5325623	7.53E-48	5.18E-44
TYMP	389.1617523	1.629446073	0.125598	12.97350338	1.73E-38	7.93E-35
OLR1	932.8101893	1.326843941	0.105716078	12.55101369	3.92E-36	1.35E-32
PLA2G4C	311.2901003	1.807025742	0.145769361	12.39647162	2.73E-35	7.51E-32
BIRC3	482.0263327	4.960908659	0.402688626	12.31946555	7.12E-35	1.63E-31
NFKBIE	235.0653324	1.858746559	0.153075883	12.14264794	6.28E-34	1.23E-30
IL34	138.1967553	3.069325655	0.256225942	11.97898086	4.58E-33	7.87E-30
NFKBIA	1500.794017	1.422924741	0.129867476	10.95674439	6.17E-28	9.42E-25
RELB	460.3645001	1.895788818	0.17429306	10.8770184	1.48E-27	2.04E-24
TRIM47	488.2175048	1.579057579	0.147620709	10.69672126	1.05E-26	1.32 <mark>E-23</mark>

Log2(treat / ctrl)

→ 0: no change

→ +: increase, -: decrease

→ Value 1: 2 fold

P value → Adjusted p value

- Multiple hypothesis correction
- Avoid lucky hits my multiple testing

Gene set analysis

We can perform gene-centric analysi
But! Too many! (20k genes)
Let's see whether there is a coherent pathway between genes

Geneset Database

Researchers already studied a lot!
We don't need to start from the scratch

GO (Gene ontology)

-Description about a given gene

Three GO domains

Cellular component: the parts of a cell or its extracellular environment;

Cell division

GO (Gene ontology)

meiosis I" have two parents.

Example of GO tree Layout of whole GO structure biological process physiological process cellular process cellular physiological process cell division cell cycle part_c meiòtic cell cycle M phase cytokinesis part_of M phase of meiotic cell cycle part_of cytokinesis after meiosis I "cellular physiological process", "M phase 15,335 Is_a or part_of relationships between 9,199 GO biological process terms (as of of meiotic cell cycle" and "cytokinesis after

March 2005, by Insuk Lee)

GO (Gene ontology)

- immune system process (3085 genes, 11199 annotations)
- II activation of immune response
- II antigen processing and presentation
- 🛌 📘 antigen sampling in mucosal-associated lymphoid tissue
- B cell selection
- II hemocyte differentiation
- I hemocyte proliferation
- I immune effector process
- ▼--- I immune response
 - II adaptive immune response
 - Cell activation involved in immune response
 - Cytokine production involved in immune response
 - II humoral immune response
 - 🛌 📘 immune response in gut-associated lymphoid tissue
 - II immune response involved in response to exogenous dsRNA
 - II immune response to tumor cell

 - ► II inflammatory response to antigenic stimulus
 - I innate immune response

• GO (Gene ontology); CD4-positive, alpha-beta T cell proliferation

Term

CD4-positive, alpha-beta T cell proliferation GO:0035739

<< first < prev 1 next > last >> 100 V
Showing items 1 - 60 of 60

Export: Text File Excel File MouseMine							
Symbol, Name	Chr	Annotated Term	Context	Proteoform	Evidence	Inferred From	Reference(s)
Arg2, arginase type II	12	negative regulation of CD4- positive, alpha-beta T cell proliferation			IMP		J:243479 [PMID:25009204]
Card11, caspase recruitment domain family, men ber 11	5	CD4-positive, alpha-beta T cell proliferation			IMP	MGI:3039682	J:89322 [PMID:12867038]
Card11, caspase recruitment domain family, men ber 11	5	positive regulation of CD4- positive, alpha-beta T cell proliferation	positively regulates CD4-positive, alpha-beta T cell proliferation.		IMP	MGI:3039682	J:89322 [PMID:12867038]
Cblb, Casitas B-lineage lymphoma b	16	CD4-positive, alpha-beta T cell proliferation			IMP	MGI:2180572	J:89097 [PMID:14973438]
Cblb, Casitas B-lineage lymphoma b	16	negative regulation of CD4- positive, alpha-beta T cell proliferation	negatively regulates CD4-positive, alpha-beta T cell proliferation.		IMP	MGI:2180572	J:89097 [PMID:14973438]
Cd3e, CD3 antigen, epsilon polypeptide	9	CD4-positive, alpha-beta T cell proliferation			IDA		J:17350 [PMID:8125140]
Cd3e, CD3 antigen, epsilon polypeptide	9	CD4-positive, alpha-beta T cell proliferation			IDA		J:75401 [PMID:11894097]
Cd3e, CD3 antigen, epsilon polypeptide	9	CD4-positive, alpha-beta T cell proliferation			IDA		J:89097 [PMID:14973438]
Cd3e, CD3 antigen, epsilon polypeptide	9	positive regulation of CD4- positive, alpha-beta T cell proliferation	positively regulates CD4-positive, alpha-beta T cell proliferation.		IDA		J:17350 [PMID:8125140]
Cd3e, CD3 antigen, epsilon polypeptide	9	positive regulation of CD4- positive, alpha-beta T cell proliferation	positively regulates CD4-positive, alpha-beta T cell proliferation.		IDA		J:75401 [PMID:11894097]
	_	positive regulation of CD4-	nositively regulates CD4-positive.				

KEGG (Kyoto Encyclopedia of Genes and Genomes)

GMT format

regulation of cardiac conduction	GO:1903779	ATP2A1	ATP2A2	ATP2A3	ATP2B1	ATP2B2	ATP2B3	ATP2B4	PRKACA	SLC8A2	SL
epithelial cilium movement involved in extracellular fluid movement	GO:0003351	CCDC40	ADCY10								
endoplasmic reticulum tubular network membrane organization	GO:1990809	ARL6IP1	ATL1	RTN4	ATL2						
negative regulation of cilium assembly	GO:1902018	LIMK2	TESK1	CDK10	CCP110	YAP1	TBC1D30	TBC1D7	ODF2L	CEP97	TO
regulation of response to interferon-gamma	GO:0060330	PARP9									
histone H3-K9 demethylation	GO:0033169	KDM4A	KDM1A	KDM4B	KDM4C	PHF8	KDM4D	KDM3A	KDM7A	KDM4E	
positive regulation of epithelial cell proliferation involved in wound healing	GO:0060054	MMP12	WNT7A	FZD7	CLDN1	ODAM	LACRT				
negative regulation of protein secretion	GO:0050709	APOE	DRD2	DRD3	DRD4	IL12A	IL12B	INS	ERP29	SERGEF	RI
determination of left/right symmetry	GO:0007368	DNAH5	FOXJ1	ZIC3	DNAH11	KIF3B	DNAI1	NPHP3	ODAD2	DNAI2	О
positive regulation of granulocyte differentiation	GO:0030854	RUNX1	EVI2B	HCLS1	HAX1	LEF1	TESC				
actin filament uncapping	GO:0051695	ACTN2									
response to metal ion	GO:0010038	MT1X	MTF1	GPHN	NDRG1	NEDD4L					
cholesterol storage	GO:0010878	SOAT1									
supramolecular fiber organization	GO:0097435	BAX	BID	COL3A1	COL5A1	CST3	FKBP1A	HSP90AB1	LTBP2	MAPT	M
enzyme-directed rRNA pseudouridine synthesis	GO:0000455	DKC1	TSR3								
positive regulation of reactive oxygen species biosynthetic process	GO:1903428	ADGRB1	CYBA	RAB27A							
L-histidine import across plasma membrane	GO:1903810	SLC7A1									
synapse assembly	GO:0007416	ACHE	BDNF	CDK5	NRCAM	POU4F1	FZD5	RAB29	PCDHB5	PCDHB14	I PO

- Geneset analysis
 - Hypergeometric test (also known as Fisher's exact test)
 - Null hypothesis: Observed list is a random sample from population.
 - Alternative hypothesis: More black genes than expected in my list.

2x2 contingency table for Fisher's Exact Test

Geneset analysis

Up-regulated genes → Fisher's exact test

→ More genes detected from "Immune activation"

GSEA (Geneset enrichment analysis)

Adjusting gene weight (Fold change, Gene expression, etc)

GSEA (Geneset enrichment analysis)

ES = 0.43 Positively enriched

ES = -0.45 Natively enriched

Low ES (no enrichment)

Gene pair: correlation (Pearson correlation coefficient: PCC / Spearman correlation coefficient (SCC)

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$
 SCC: rank-based (non-parametric)

Centrality by node degree

Centrality by betweenness

- -Node degree: number of edges for each node → highest
- -Betweenness: find shortest path for each node pair → sort by how many shortest paths pass each node → highest

WGCNA: Weighted Gene Co-expression Network Analysis

Gene pair → correlation

- → Weight * corr → thresholding
- → Hierarchical clustering, tree cutting

Gene expression program / module

Weight: until it maintains scale-free topology

Scale-free topology

- -only some of nodes have most of the edges
- -edge follows power law

