Bulk RNA-sequencing



» Data acquisition
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* High throughput data
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* High throughput data
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Whole transcriptome RNA-sequencing



 RNA-sequencing
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Base-resolution expression profile

RNA expression level

Nuclectide position

RNA-Seq: a revolutionary tool for transcriptomics

with adaptors

Short sequence reads

poly(A) end reads

Mapped sequence reads

Nature Reviews | Genetics

- Raw mRNA

- RNA fragment chopping

- Reverse transcriptase

- Adaptors - Obtain the sequence

Read (single-end) (100 ~ 200 bp)

Or
Fragment (paired-end): high confidence
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Read 1 Adapter Read 1 Read 2 Adapter
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 RNA-sequencing

Data format: fastq file

'Labd |
LJ Sequence

L

@FORJUSPO2AIWD1
CCGTCAATTCATTITAAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGT

9@::::?2@@: : FFAAAAACCAA: : : : BB@@?A?

Q scores (as ASCII chars)

‘ Base=T,0=":"=25

CTTGGCTTTAAT

RXX:1:1161:1325:
GAGTACATGGGAATAAC

CCATCCTTTGGCCTCTGA

FFF:FFF:FFFFFFFFFFF, , FFF: : FFFFFFFFFFFFF

GCTGTGAAATTACTCAGATGTTGAAA



 RNA-sequencing (Alignment)

Fastq file > somehow gene by count matrix (it could also be a transcript or isoform)

1) Alignment (ex: STAR = Genome, Kallisto = Transcriptome)
- Each reads - where in the genome Splicing event

Reference genome

Biological samples/Library preparation

Sequence reads

FASTQC
donor site acceplor site

Adapter Trimming [J(@]ej{felgF1)] referenci genome

oo GNP
i

% %
% %\
Counting reads associated with genes P

Statistical analysis to identify —] I ] m“‘l iy
) /’ o

donor site acceptor site

Reads

rea

differentially expressed genes

reference genome



 RNA-sequencing (Alignment) GENCODE
NINININON'G

Human Mouse How to access data FAQ Documentation About us

- Genome: different genome assembly version ,
Human: GRCh37.## (hg19), GRCh38.## (hg38) HUMAN MOUSE
Mouse GRCm38’ GRCm39 GENCODE 47 (October 2024) GENCODE M36 (October 2024)
Different versions cannot be used together ' | ,

—> Different nucleotide locus

- Same genome build but different version
(or release): compatible with each other
(mostly gap-filling)

- Human genome size: 3.1 Gbase pairs, Mouse genome size: 2.7Gbp = mapping is not trivial
Genome building: Making a dictionary for boosting the mapping time



 RNA-sequencing (Alignment)

Read1, 2, 3 ... 2 Gene1

Read13, 22, 23 ... 2 Gene2

Read37, 211, 309 ... > Gene3

Output: SAM or BAM file (BAM: binary file)

Started job on

Started mapping on

Finished on

Mapping speed, Million of reads per hour

Number of input reads
Average input read length

UNIQUE READS:

Uniquely mapped reads number
Uniquely napped reads %

Average mapped length

Number of splices: Total

Number of splices: Annotated (sjdb)
Number of splices: GT/AG

Number of splices: GC/AG

Number of splices: AT/AC

Number of splices: Non-canonical
Mismatch rate per base, %
Deletion rate per base

Deletion average length
Insertion rate per base
Insertion average length

MULTI-MAPPING READS:

Number of reads mapped to multiple loci
% of reads mapped to multiple loci
Number of reads mapped to too many loci
% of reads mapped to too many loci

UNMAPPED READS:

Number of reads unmapped: too many mismatches
% of reads unmapped: too many mismatches
Number of reads unmapped: too short

% of reads unmapped: too short

Number of reads unmapped: other

% of reads unmapped: other

CHIMERIC READS:

Number of chimeric reads
% of chimeric reads

Jul 17 20:54:45
Jul 17 20:55:04
Jul 17 21:06:18
160,92

27974985
92,85%
201.55
22952060
22816849
22776111
145758
18027
12164
0.17%
0.01%
1.92
0.01%
1.50

1262485
4.19%
10600
0.04%

0
0.00%
874728
7.00%

2.1




 RNA-sequencing (Alignment)

Unigue mapped read - what we use for data analysis
What are other reads?

ANAARIONN | NANAN
NANANNNAN NN
NN\ AANAN

NANN

Microbiome reads,

Human read L
contamination ...

_/\_/\_/\ Long read: High specificity - won’t map to other regions

Ex): PacBio; high error rate

/\/\/\ Short read: Multiple mapping to many regions



* RNA-sequencing (Quantification)

- Mapped reads - count matrix (per gene)
Counting reads mapped to a given gene
Ex) FeatureCounts (gene), Kallisto (transcript)

Celll Cell2 ... CellN

Genel| 3 2 . 18
Gene2| 2 3 . 1
Gene3 | 1 14 . 18
GeneM 25 0 : 0

- Mapped reads - count matrix (per isoform)

Unique exon count, EM (expectation maximization)
algorithm

Ex) RSEM or longread sequencing

Exon 1 Exon 2 Exon 3 abundance
soform 1 [ X
Isaform 2 I N -
Isoform 3 [ I <

SO1
S02
so1
S02

Gene2 Gene1

sS03




 RNA-sequencing (Kallisto; Alignment)

Kallisto: align to transcriptome (less reference size compared to the genome) - super fast

a

b

-black line: read (fragment)
-pink, blue, green: potential transcript (from the reference)

-de Bruijn graph (T-DBG) formation
-O: k-mer (hashed by indexing - fast search)
-@: compatible node between read and the reference

d: first search: v1 = skip until v4 (non-overlapping)
—> fast search
—> Align only to the possible transcripts



 RNA-sequencing (Kallisto; Quantification)

Quantification: Expectation Maximization (EM) algorithm
- Find a variable to maximize the Likelihood - first-derivative = 0

Probability

L(a): likelihood function for the alignment VS

a: probability of selecting fragments from transcripts
|. effective transcript length leellhOM
F: set of read I

T. set of transcript (reference)
Y: alignment matrix (above slide): O or 1
C: number of counts from equivalence class (of k-mer) e

Le

o ' o
@ =TT Syl -T]| %

feF teT I ecE\tee

F

- What is the a to maximize L(a)?



 RNA-sequencing (Normalization)

- Why?

1) Gene length normalization: Different probability of “read” capture rate during sequencing

—> longer gene has a higher chance of being mapped -

.0
.0
*

Should be the same

v,
L]
L]
L]
L]
a
v
L]
L]
L]
L]
L]
v,
&

.
...
‘e

Total fragments ... Number of reads Gf}he region
RPKM =, =,
Mapped reads (millions) * exon length (KB) & Total reads Region length
*
1,000,000 1,000

TPM: Total reads normalization - total read after gene
length normalization



 RNA-sequencing (Batch correction)

- Why?
Same sample - but, a technical confounding effect
(My experiment and your experiment should be the same!)

*Limma: linear regression-based, Combat: negative binomial distribution, DESeq2: scaling factors

a b

Before batch-effect removal After batch-effect removal
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« PCA (principal component analysis)

- Find a PC axis to maximize the variance of the data - Distribute samples to maximize the variance

2
&
>< °
-
—d.
-]4 —12 6 é -4 =2 0 2
) GATA3 GATA3

- Number of PC == Number of features or <= sample size

- Usually, we have more features (~20k)

- Each PCs: explain the variance of the data ---......

> Using only a few PCs: Dimension reduction "
Advantage: among confounding effects, noise, we can solely h
capture the biological difference

(or meaningful information)

+ data representation & visualization (20K genes - 2 PCs)

All
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» Clustering

Unlabelled Data



Distance measurement for clustering

#» Euclidean distance (a sfraight line distance in n-dimensional space)

d= \ji{xf _}:5)3

d = li{x ) ,if you don’t want to increase the distance with the addition of
ne= ' 7 more dimensions.
« Euclidean distances may underestimate join differences such as differences in two
correlated expression .

« Therefore, use Euclidean distance if you believe that your dimensions (variables) are not
independent.

» Manhattan distance (= city block distance, L1 distance, rectilinear distance,
taxicab metric): distances measured parallel to dimensional axes. After NY city's

grid like street pattern.

d = Zl|v’f -] Gene expression space
i: each gene
d = 1 Z x, —y,| ifyoudon'twant to increase the distance with the addition of n: the number of genes
n“"" “"  moredimensions.



» Clustering

MiniBatch Affinity Spectral
[ RMeans  Jropagation  MeanShift Clustering




* K-mean clustering

K-mean clustering (linear approach)

» Algorithm
Initial k: Decide the number of cluster (k) !
2. Initial value of centroids: Choose k " Numberof /
centroids randomly. cluster K /
3. Objects-centroids distance: Calculate %
the distance between cluster centroid to
each object (with any distance metric). Centroid
4. Objects clustering: Assign each object *
based on minimum distance. . :
Distance objects to
3. Determine new centroids: New centroid centroids
moves to mean value of all member f
objects. Grouping based on
6. [terate steps 3-5: Until no object change minimum distance
centroid membership.




* K-mean clustering MiniBatch
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* Hierarchical clustering
e ® e ®O®

» Algorithm gl is most like g8
Initialize each single gene as a cluster % {@ ,@, @ @ (e .@

2. The pairwise distance matrix is calculated for all of o
od 15 most like (g1, g8}

the genes to be clustered.
3. The distance matrix is searched for the two most (1) lgs; 3 O . @ (€7}

similar genes or clusters. |
4. The two selected clusters are merged to produce a
new cluster that now contains at least two objects.
‘ DIORCROIONOIOXO)
5. The distances are calculated between this new lj is most like g7

cluster and all other clusters. There is no need to /,—l?_| _

calculate all distances as only those involving the (21) (e8) @ Q O rgﬁq\ %g?) -@
new cluster have changed.
| fg5.27) 15 most hke [zl g4, g8}

6. Steps 3-5 are repeated until all objects are in one

cluster. | g | L
@@ @ @@ @ @ @@
|

|




* Hierarchical clustering

Tree cutting
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DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

« Clustering algorithm that divides a dataset into subgroups of high density regions.

« Two parameters required for DBSCAN:

— Epsilon (g): a distance parameter that defines the radius to search for nearby neighbors
— MinPts: minimum number of other points required to form a cluster

- Core point — a point that has at least the minPts of other points within its € radius.

« Border point — a point within the & radius of a core point BUT has less than the minPts within
its own € radius

« Noise point — a point that is neither a core point or a border point

Core point

Nolise point Border point

®
=
]
\H.
%
. %
A1
" ® ¢ h .
\"M -l"“I ‘ :
1;__‘---‘##.- \ . ]
. ¥ !
'e) MinPts=3 ® \& .
k1 #
O 0 . .



DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Each core point forms a cluster together with the points that are reachable within its € radius.

« Two points are considered “directly density-reachable’ if one of the points is a core point
and the other point is within its £ radius.

- Larger clusters are formed when directly density-reachable points are chained together.

* Inthe example image below, there are two clusters:

. oy, |

1. If minPts = 3, p is directly density-reachable from m, which is directly density-reachable from q.
The sets of points within the € radius of p — m — q form one cluster

2. rand s are indirectly density-reachable through a path of 4 core points. The set of points within
the & radius of this chain forms another cluster.



« DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

MiniBatch

The DBSCAN algorithm repeats the following process until all points have been assigned
to a cluster or are labeled as visited:

1. Arbitrarily select a point P. “‘G’ '\
2. Retrieve all points directly density-reachable from P with respect to €. {0 C} Q
3. IfPis acore point, a cluster is formed. Find recursively all its density connected points _cw,., " ,‘.,#"

and assign them to the same cluster as P. _ - 00s

4. IfPis not a core point, DBESCAN iterates through the remaining unvisited points in
the dataset.

« DBSCAN does not require us to specify the number of clusters. r{y

» |t can handle clusters of arbitrarily shapes and sizes.

» |tis robust to noise.

Nonlinear appro@b

.'I'J..'q..

Original Points

(MinPts=4, Eps=9.92)




 DEG (Differentially expressed gene) analysis

-Which gene is expressing differently between two groups

I
CTRL I Treat

Up-regulated

Not significant

Down-regulated




 DEG (Differentially expressed gene) analysis

-DESeq2: Estimate variance-mean dependence in count data from high-throughput sequencing assays
and test for differential expression based on a model using the negative binomial distribution
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 DEG (Differentially expressed gene) analysis

VCAM1
TNFAIP3
TYMP
OLR1
PLA2G4C
BIRC3
NFKBIE
IL34
NFKBIA
RELB
TRIM47

baseMean log2FoldChange
4566.645595 1.938889067
1099.976807 1.84009256
389.1617523 1.629446073
932.8101893 1.326843941
311.2901003 1.807025742
482.0263327 4960908659
235.0653324 1.858746559
138.1967553 3.069325655
1500.794017 1422924741
460.3645001 1.895788818
488.2175048 1.579057579
v
Log2(treat / ctrl)

- 0: no change
- +:increase, -: decrease
- Value 1: 2 fold

IfcSE

0.119610186
0.126618591
0.125598
0.105716078
0.145769361
0.402688626
0.153075883
0.256225942
0.129867476
0.17429306
0.147620709

stat

16.21006642

14.5325623
12.97350338
12.55101369
12.39647162
12.31946555
12.14264794
11.97898086
10.95674439

10.8770184
10.69672126

P value - Adjusted p value

pvalue

4.28E-59
7/.53E-48
1.73E-38
3.92E-36
2.73E-35
7.12E-35
6.28E-34
4.58E-33
6.17E-28
1.48E-27
1.05E-26

v

X
5.89E-55
5.18E-44
7.93E-35
1.35E-32
7.51E-32
1.63E-31
1.23E-30
/.87E-30
9.42E-25
2.04E-24
1.32E-23

- Multiple hypothesis correction
- Avoid lucky hits my multiple testing



* Gene set analysis

We can perform gene-centric analysi
But! Too many! (20k genes)

Let’'s see whether there is a coherent pathway between genes
|
CTRL I Treat

Up-regulated genes: ex) Immune activation, chemotaxis, ...




 (Geneset Database

Researchers already studied a lot !
We don’t need to start from the scratch

{Gene Ontology ‘ ‘MSigDB-cZ ‘ REACTOME
— 1 MSigDB

| - Molecular Signatures
— = Database

ﬁ_':-__'__._fhe Gene Ontology

KEGG

‘BIOCAF{TA ‘
. HumanCyc
EIU'I'-:.“.;':".I;HT.I'-"L @HUMAH(

——— /
— " Amember of the BioCyc databae



« GO (Gene ontology)

-Description about a given gene

<+ Three GO domains

» Cellular component: the parts of a cell or its
extracellular environment;

+ Molecular function: the elemental activities of a
gene product at the molecular level, such as binding
or catalysis;

+ |Biological process: operations or sets of molecular
events with a defined beginning and end, pertinent
to the functioning of integrated living units (cells,
tissues, organs, and organisms);

nim :H
= o 0. 0tH HO-F—=0 _OH
HO—P—0" i _ =0
.!, . l S r .E '\’:.vL- .:/-";,.I‘H
HO I OH "'"—’| ‘-___,u/
UH Ho' b
3-D-glucose-8-phosphate fructose-6-phosphate]

glucose-6-phosphate isomerase activity

Nuclear restaution. nucloar Aggregaton of chromosomes a the of
envelope and nuckeolar poles, Deginning of cel divison, chromosomes and
formation, end of cell division Intation of ceavege furrow

Cell division



GO (Gene ontology)

» Example of GO tree » Layout of whole GO structure

biological process

is _;/ \&;_a

physiological process cellular process

\ A

cellular physiological process

is_a is_a
cell cycle cell division
Daﬂ_y &_a
M phase meiotic cell cycle 5_a
part_of cytokinesis

is_a
M phase of meiotic cell cycle

part_of Is_a
“cellular physiological process”, “M phase 15,335 Is_a or part_of relationships between
of meiotic cell cycle” and “cytokinesis after 9,199 GO biological process terms (as of

meiosis I” have two parents. March 2005, by Insuk Lee)



« GO (Gene ontology)

V.

B immune system process (2085 genes, 11199 annotations)

b

B eI =3

activation of immune response

antigen processing and presentation

antigen sampling in mucosal-associated lymphoid tissue

B cell selection

hemocyte differentiation

hemocyte proliferation

immune effector process

immune response

- H
@
@

=

adaptive immune response

cell activation involved in immune response

cytokine production involved in immune response

humoral immune response

immune response in gut-associated lymphoid tissue
immune response involved in response to exogenous dsRNA
immune response to tumor cell

immuneclogical memory process

inflammatory response to antigenic stimulus

innate immune response



« GO (Gene ontology); CD4-positive, alpha-beta T cell proliferation

Term | CD4-positive, alpha-beta T cell proliferation

10| GO:0035739

Showing items 1 - 60 of 60

Export: | ! Text File| |* Excel File| P MouseMine

Symbol, Name Chr Annotated Term Context Proteoform Evidence Inferred From Reference{s)
negative regulation of CD4-
Arg2, argingse type II 12 positive, alpha-beta T cell IMP 1:243479 [PMID: 25009204]
proliferation
F;::ijlilh“:ﬁiff{f“m'tme“t e 5 gm’fgf:&f’ TrEiER IR IMP MGIL: 2039682 3:89322 [PMID:12867038]
. . positive regulation of CD4- " -
Card11, cagpase recruitment domain 5 positive, alpha-beta T cell positively regulates CD4-positive, IMP MGI:3039682 1:89322 [PMID:12867038]
family, menjber 11 proliferation alpha-beta T cell proliferation.
Cblb, Casitas B-lineage lymphoma b 16 Eiﬁfﬂfﬁéﬂf CpIEREE AR IMP MGI:2180572 1:89097 [PMID:14973438]
negative regulation of CD4- negatively regulates CD4-positive
Cblb, Casitds B-lineage lymphoma b 16  positive, alpha-beta T cell g Y reg =P ' IMP MGI:2180572 1:89097 [PMID:14973438]
proliferation alpha-beta T cell proliferation.
Cd3e, CD3 fntigen, epsilon polypeptide ) gm’fgf:&f’ TrEiER IR IDA 3:17350 [PMID:8125140]
Cd3e, CD3 ntigen, epsilon polypeptide ) ggﬁ;gf:t'fgf’ alpha-beta T cell IDA 3:75401 [PMID:11894097]
Cd3e, CD3 pntigen, epsilon polypeptide ) ggﬁ;g:’:&f’ Seraban e IDA 3:89097 [PMID:14973438]
positive regulation of CD4- ositively regulates CD4-positive
Cd3e, CD3 gntigen, epsilon polypeptide ] positive, alpha-beta T cell p Y reg 9Pt ! IDA J:17350 [PMID:8125140]
proliferation alpha-beta T cell proliferation.
e ositively regulates CD4-positive
Cd3e, CD3 fntigen, epsilon polypeptide 9 positive, alpha-beta T cell P v reg AP ' IDA 1:75401 [PMID:11894097]
proliferation alpha-beta T cell proliferation.
— _ DOE!F!?E rE.gL.”at!On Df_CDﬂ_ nasitivelv renulates CN4-nositive. — [, e -




 KEGG (Kyoto Encyclopedia of Genes and Genomes

CITRATE CYCLE (TCACYCLE)

Phosphoenol-
¥ e
41.1.32 p-':o— ______ o Glycolysis
41.1.49 Gliuconeogenesis
Fatty acid biosynthesis —_———— -\‘ 1271
(_Futl}-‘ acid elongation in |11|t\vchmldrm}4 —_—— “'\‘ 12711

ThPP
O

Val, Leu & lle degradation )= =7 7 |

Fatty acid metabolism

. ind O a4 Pyruvate
Acetyl-CoA Acet

O

1814
Dihydro-

Glyoxylate and dicarboxylate lipoamide-E

Lipoamide-E
olism

|

|
f’( | 2331 |[ 2333 | Citrate
A

Isocitrate
- w4213 O 4215 FwOt-—
Oxaloacetate | 233.5 [ 2332

cis-Aconitate

(3)-Malate &

Oxalosuccinate ©
Arginine biosynthesis

|
—W? Fumarate

2-Oxo-
Y 6214]  Succinyl-CoA glutarate
d————O#—T]g215—»0 O ————"0(" Arginine biosynthesis
Succinate 218318
| I\ —  _ _»| Ascorbate and aldarate

O— metabolism
Lipoamide-E

12711

1273




e GMT format

regulation of cardiac conduction

epithelial cilium movement involved in extracellular fluid movement
endoplasmic reticulum tubular network membrane organization
negative regulation of cilium assembly

regulation of response to interferon-gamma

histone H3-K9 demethylation

positive regulation of epithelial cell proliferation involved in wound healing
negative regulation of protein secretion

determination of left/right symmetry

positive regulation of granulocyte differentiation

actin filament uncapping

response to metal ion

cholesteral storage

supramolecular fiber organization

enzyme-directed rRNA pseudouridine synthesis

positive regulation of reactive oxygen species biosynthetic process
L-histidine import across plasma membrane

synapse assembly
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* Geneset analysis

%+ Hypergeometric test (also known as Fisher’s exact test)

* Null hypothesis: Observed list is a random sample from population.

» Alternative hypothesis: More black genes than expected in my list.

2x2 contingency table for Fisher’s Exact

Test
Gene list In gene list Not in gene list
In pathway x=4 496 m = 500
: E/IR;[; Not in pathway k-x = 1 4499 t—m=4500
. RRP7 k=5 4995 t -‘500({
@ RRP43
@ RRP42

(m)(l—m)
m ._ k_‘_
AX=x>q)= Z - - Y

= (0

: population:
500 black genes,
4500 red genes




* Geneset analysis

|
CTRL 1 Treat

Up-regulated genes - Fisher’s exact test
- More genes detected from “Immune activation”




 GSEA (Geneset enrichment analysis)

Adjusting gene weight (Fold change, Gene expression, etc)

Enrichment score (ES) =
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GSEA (Geneset enrichment analysis)

ES=0.43 ES =-0.45

Positively enriched Natively enriched
Enrichment plot: GZPATHWAY

Low ES (no enrichment)

Enrichment plot: NFKBPATHWAY

Enrichment plot: IL6PATHWAY
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* Network analysis

Sample - Gene A

High correlation
Gene B

3

Expression Gene C Low correlation

Sample -

Gene pair: correlation (Pearson correlation coefficient: PCC / Spearman correlation coefficient (SCC)
cov(X,Y)  SCC: rank-based (non-parametric)

XY —
P oxay



* Network analysis

a
Co-expression
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Network construction

Module definition
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module
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\ Regulatory network

identification
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* Network analysis

Human Gene Coexpression Network
mitochondrial metabolism

nuclear related and redox homeostasis

metabolism

histocompatibility*

homeostasis
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* Network analysis

Module (0.0] ®

Centrality by node degree Centrality by betweenness

-Node degree: number of edges for each node - highest
-Betweenness: find shortest path for each node pair - sort by how many shortest paths pass each node - highest



« WGCNA: Weighted Gene Co-expression Network Analysis

Gene pair - correlation
- Weight * corr - thresholding
—> Hierarchical clustering, tree cutting

Gene expression program / module
Weight: until it maintains scale-free topology
Scale-free topology

-only some of nodes have most of the edges
-edge follows power law

C. Network heatmap plot

TN
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