
Single-cell RNA-sequencing
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• scRNA-seq technology

Comparative Analysis of Single-Cell RNA 

Sequencing Methods



• Smart-seq2

-FACS sorting → 96-well PCR plates

-Cell Lysis

-Reverse transcription → cDNA …

-Tn5 tagmentation (chopping and tagging)

-Full-length sequencing

-Each Fastq file corresponds to each cell



• 10x technology (drop-seq based)

Why 10x ??

→ High throughput (for cell point of view) 

& cheaper per cell

-Drawback: since droplet size is fixed and the 

cell must go inside the droplet, there is a 

physical restriction for a cell to enter the droplet

(Big cell cannot go inside)

-Cell dissociation stress: hard to observe 

epithelial cells or stroma cells

Bias in liquid cell: Immune cells

1 fastq file (result of single experiment)

→ ~3k ~ 10K cells!



• 10x technology

-10x barcode → distinguish each cell

-UMI: avoid PCR amplification bias → transcript counting

-Poly(dT): captures poly A tail from mRNA



• Raw data

-Of course, FASTQ file

-Read1 (or I file): Cell barcode &UMI sequence

Variety of UMI → gene expression 

-Read2: mRNA sequencing information → STAR → which gene? 

But limited length; biased to 3’ region

Technically paired-end sequencing → Biologically single-end sequencing



• Raw data

-Single cell → Transcript is scarce → low capture rate → high drop out (many zero count: 90 ~ 95 %)

+ short read (tend to be multi-mapped), single-end (low confidence

!! Hard to distinguish between real zero and drop out

Embracing the dropouts in single-cell RNA-seq analysis



• Initial quality control

-Distinguish the barcodes 

from empty droplet

→ Barcode == Cell

Failed



• Ambient RNA
-There is still some RNA detection from the empty 

droplet

-This ambient RNA might be universal for all droplets, 

even those that contain a cell

-Cellbender (at the sequence level), 

SoupX (at the count level)

-Training data set: empty droplet 

→ Adjust the ambient RNA distribution to real cells

→ Adjust the expression values for each cell



• Doublet (multiplet) detection

-10x can profile many cells, 

but sometimes it is not perfect

→ Multiple cells in the droplet

→ Should be done before any bad cell remover: 

doublet can be formed with bad cells, too



• Doublet (multiplet) detection
-make a synthetic doublets 

by merging two cells

-compare those synthetic 

doublets with Singlets and 

Doublets

But it is still hard to distinguish 

the homotropic doublets

DoubletFinder, Scrublet, scDblFinder, …



-Quality control

Why? There might be some bad cells collected

(reason: cell stress during processing, high drop-out)

Low nCount or nFeature → empty droplet

nFeature > 150 ~ 200 (There should be certain 

number of gene detected: Housekeeping gene)

High nCount or nFeature → doublet

High MT % → dead cell

• Quality control for bad cells



-Quality control

Oops!

1) Neutrophils (or other granulocytes): relatively low RNA content and relatively high levels of RNases 

and other inhibitory compounds, resulting in fewer transcripts detected

→ They need to secrete cytolytic enzymes, no time for other gene expression

2) Plasma cell: relatively low RNA content 

→ They need to secrete antibodies!

3) Red blood cell: low RNA content and nFeatures

→ It has no nucleus; no transcription (But we usually don’t analyze it)

• Quality control for bad cells



-Total read count normalization: Adjust read-depth between each cell

Log-transformation: adjust the variance of the gene expression matrix 

Scaling: gives equal weight in downstream analyses, so that highly-expressed genes do not dominate

!! No gene length normalization

→ Only captures a short region of 3’ end → no bias for gene length since every gene has only one 3’ end

• Normalization and Scaling

Broad range of read depth for 

each cell

→ Different distribution of 

gene expression for each cell



- Each cell is heterogeneous 

→ Confounded by technical factors (sequencing depth)

→ Cell cycling phase 

- sctransform regresses out those confounding effects (using NB-GLM)

• sctransform normalization



- scRNA-seq tends to have a lot of drop-out

→ Not all the genes are informative → select informative genes and reduce noise

→ Highly variable genes (across different cells)

• Feature selection

-In bioinformatics (or data analysis point of view),

Variance can reflect the amount of information

-It is likely that highly expressed genes (high mean 

value) have high variance

→ therefore, we must adjust variance by mean value

-Common red flag hkg genes

→ HLA, TCR/BCR (individual diversity), cell cycling 

(we don’t want cell cycling phase affect the cell 

annotation)

!! We always need to consider individual (batch) 

specific genes (to remove)



-Too many features (genes) → hard to interpret

→Dimension reduction: abstract of many features!

PCA: commonly used in bulk RNA-seq data → insufficient for scRNA-seq

UMAP: adjusted for scRNA-seq (similar cells to be close and different cells to be far away)

• Dimension reduction (PCA & UMAP)



• Batch correction

-Reason → To remove technical variation or confounding 

effect between samples

-Assessment

Batch: good mixing

Cell type (or cluster): separated

-Entropy:                                        (High: mixing)

-Silhouette Coefficient: 

b: distance to closest neighbors

a: distance to self cluster

s → high: far from neighbors → separated

Batch effects in single-cell RNA-sequencing data are 

corrected by matching mutual nearest neighbors



• Batch correction

A benchmark of batch-effect correction methods for 

single-cell RNA sequencing data



• Batch correction (Seurat)



• Batch correction (Seurat)

*Canonical Correlation Analysis (CCA)

ҧ𝑥 =  ෍ 𝑎𝑖𝑥𝑖

ത𝑦 =  σ 𝑏𝑗𝑦𝑗 

- x,y: gene expression for each group

- Linear combination for each group

→ Maximize the correlation between ҧ𝑥 & ത𝑦 

→ L2-normalization: 

Normalize each canonical vector



• Batch correction (Seurat)

*Find anchor by MNN (mutual nearest neighbor)

- Batch1, sample1 → KNN (k-nearest neighbor) from batch2

- See if there is a pair of samples by KNN

- Go back to raw gene expression (top 200 genes from CCA) → KNN (200) for anchor cells in the ref

→ See if query exists in 200 neighbors

- SSN (shared nearest neighbor): see if the neighbor of ref-anchors 

has a similar neighbors of query-anchor

→ SSN will be used to weigh each anchor



• Batch correction (Seurat)

*Multiple data integration: pairwise integration from the closest pair first

*Obtaining batch corrected expression

B: batch effect (X,Y: gene expression space from each batch)

C: correction

W: weight matrix (from anchor)
෠𝑌: corrected gene expression



• Batch correction (Harmony)

Correcting the PCA embedding into a batch corrected embedding (harmony space)

Soft k-mean clustering: k-mean clustering + entropy regularization (of each cluster membership)

Correction: batch diversity regularization

Iterate until convergence



• Batch correction (Harmony)
- Sample level batch correction



• Label Transfer

-Reference → query1, query2, query3 … (independently)

When? Large, comprehensive, and reliable reference data exists!

→ No need to celltype annotation, etc



• Clustering
- Louvain clustering: considering the modularity of the (cell) graph

Before performing the clustering, Seurat package obtained SNN (shared-nearest neighbor) graph

 



• Clustering
- Louvain clustering

Resolution → controls the number of clusters

 

Res: 0.5 Res: 1Res: 0.3



• Celltype annotation
How? Distribution of marker gene expression

-Functional marker: CD3 for T cells

-Expression marker: MHC class2 for T cells

* Immune cell

Tcell: "CD3D", "CD3E"

CD4 T cell: "CD4"

CD8 T cell: "CD8A", "CD8B"

Treg: "FOXP3", "IL2RA"

NK cell: "KLRB1",  "GNLY",  "KLRD1",  "NKG7"

B cell: "MS4A1", "CD79B"

Macrophage: "C1QA", "C1QB", "CD14", "CD68"

Monocyte: "FCN1","S100A8",  "S100A9"

Mast: "TPSAB1",  "CPA3“

Cycling: "MKI67",  "TOP2A“

* Non-immune cell

Pericyte: "CSPG4", "MCAM", "MYH11"

Endothelial cell: "RAMP2",  "RNASE1",  "ENG",  "EGFL7"

Cancer: "PAX8"

Epithelial cell: "SLC26A7",  "EPCAM",  "MUC1"



• Celltype annotation
FindAllMarkers: This is not a “marker” but just DEG! Don’t confuse

Wilcoxon-rank sum test + Bonferroni correction

→ Nonparametric approach (does not require a specific distribution of data)

0 cluster vs the others (1~15)

Same for every cluster

Caveat!

→ Dilution effect → False positive
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Small population False DEG!



• Celltype annotation
FindAllMarkers

Adjusted p-value, average_Log2FC + expression cell ratio (pct.1, pct.2) 



• Celltype annotation



T cell and NK T cell CD4 T CD8 T

Treg

NK



Bcell and myeloid

B cell

Macrophage

Mast

Monocyte



Stroma cell

Pericyte

Endothelium



Epithelial and tumor
Cancer

Epithelium



• Celltype annotation

Subsetting and reclustering → 

Annotation

- HVG can be reset: better for 

comparing within CD4_T cell 

subclusters
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