Single-cell RNA-sequencing

Differentially expressed gene analysis between two groups

- Wilcoxon rank sum test between two groups for each cell type (or cluster)
- → Nonparametric approach (does not require a specific distribution of data)
- → Adjusted p-value, average_Log2FC + expression cell ratio (pct.1, pct.2)

```
p val avg log2FC pct.1 pct.2
        TMSB4X
CD74
        1.336753e-110 2.4380974 0.841 0.460 4.376260e-106
HLA-DRA
         6.658395e-84 2.6055562 0.616 0.121 2.179825e-79
RPS29
         9.853846e-84 -0.6238238 0.997 1.000 3.225952e-79
RPS14
         5.520321e-81 -0.6245685 0.993 1.000 1.807243e-76
RGS1
         8.877664e-78 1.3781774 0.872 0.485
                                           2.906370e-73
RPS27
         2.936975e-74 -0.4452566 1.000 1.000 9.615067e-70
RPLP2
         8.556250e-74 -0.5271463 0.998 1.000 2.801145e-69
DUSP4
         1.420529e-72 2.1971333 0.553 0.075 4.650527e-68
RPL3
         5.104196e-72 -0.6507585 0.982 0.992
         3.198898e-69 -0.5291642 0.997 1.000 1.047255e-64
EEF1A1
         7.501267e-69 -0.5543631 0.994 0.998 2.455765e-64
RPS3
        3.762663e-62 1.7883327 0.662 0.273 1.231821e-57
HLA-DPB1 1.903542e-61 1.7512534 0.649 0.275 6.231815e-57
```

```
GZMA: Tumor_CD8 T cell > Normal_CD8 T cell

→ Cytotoxic

HLA-DRA, HLA-DRB1, HLA-DPB1: Tumor_CD8 T cell > Normal_CD8 T cell

→ activated
```

Geneset analysis

AddModuleScore

AUCell

- -Order genes by expression for each cell
- -Measure AUC for a given geneset

-Receiver operating characteristic (ROC) curve: performance measurement

-AUC: area under curve

→ Quantification

ssGSEA & GSVA

*ssGSEA

- -Order genes by expression for each cell
- -Make a ECDF (empirical cumulative distribution function) for a given geneset and remaining genes, respectively
- -Integration of difference between two ECDFs

*GSVA

- -Order genes by expression for each cell
- -Make a ECDF
- -KS-test (Kolmogorov-Smirnov test)
 Statistics by maximum difference

Is not always good

- -Biased to cancer (upregulation >> down regulation)
- -Robustness (against noise): Up > Down
- -Robustness (against down-sampling): ssGSEA (worst)

cNMF

(consensus non-negative matrix factorization)

*Unsupervised approach
NMF: Decomposition method
Make W,H be close to X
Gradient descending

$$X = WH$$

$$H := H - \eta_{H} \circ \nabla_{H} ||X - WH||_{F}^{2}$$

$$W := W - \eta_{W} \circ \nabla_{W} ||X - WH||_{F}^{2}$$

$$\therefore H := H \circ \frac{W^{T}X}{W^{T}WH}$$

$$\stackrel{\triangle}{\to} (36) \Rightarrow W := W + \frac{W}{WHH^{T}} \circ (XH^{T} - WHH^{T})$$

$$= W + W \circ \frac{XH^{T}}{WHH^{T}} - W \circ \frac{WHH^{T}}{WHH^{T}} = W \circ \frac{XH^{T}}{WHH^{T}}$$

cNMF

X = WH

-X: gene expression (N x M)

N: cell, M: gene

-W: program usage (activity): N x k

k: number of program

-H: gene expression program: weight of each gene k x M

Consensus → robustness
Take median value of each gene

cNMF

-Define density_threshold by KNN distance distribution

-K selection → stability: high, error: low

-Batch correction for input count matrix (harmony) moe_correct_ridge (same algorithm in harmony)

Signature analysis

Tumor infiltrating T cell → might be exhausted Exhaustion signature: PDCD1, CTLA4, HAVCR2, LAG3, TOX

→ T cells in the tumor-microenvironment are exhausted

Cell abundance

*T-test, Wilcoxon

Always! Relative abundance Why? The cell counts for each sample is always different

Sample size is usually very small for scRNA-seq

→ Poor power analysis (less significant)

*Fisher's exact test

- -Comparing by group-level
- -Very sensitive; high false-positive

*Dirichlet Regression

-one celltype ↑→ one celtype ↓

-prior reference

celltype selection

Cell abundance (MILO)

Test neighbourhoods for differential abundance

- -KNN graph of cells
- -Sampling to increase statistical power
- -Perform enrichment test for each sampling Which **condition** has more in the neighborhood

Cell abundance (MILO)

overlap size

- 25
- 50

NhoodGroup

- 1
- 10
- 2
- 3
- o 4
- . .
- ° 6
- 7
- . .
- 9

Cell-pooling

-High drop-out rate: zero count ↑
-merge cells → pseudo cell → averaging → overcome drop-out!

Metacell

- -balanced KNN graph construction
- -resampling → consensus-based partitioning
- -remove outliers

BBKNN

Difference by cell type > difference by batch in a given cell type

- KNN for whole data
- KNN across batch with smaller k
- → Batch corrected pooling

Pseudobulk DE analysis

- -Extreme case
- -Generate a pseudobulk for each sample (each cell type)
- → Perform bulk DE analysis (DESeq2, Limma, edgeR ...)
- -Overcome high dropout
- -susceptible to outlier cells
- -cannot account for expressing cell ratio

Network analysis in scRNA-seq

- -Skewed too much to zero-counts
- → Hard to obtain a suitable correlation

• BigScale2

- -High granularity clustering: Recursive clustering (Hierarchical clustering)
- -all pairwise comparison → DE → measure Z-score for each gene
- → Correlation (similar effect of cell-pooling)

scHumanNet

- -Filtering out the "cell-type-specific" network from the reference network -HumanNetv3, String
- *SCINET framework
- -clustering → Archetype → transcriptome interpolation (smoothing)
- -gene expression transformation
- → Better distribution
- -subsampling (per cell type)
- -p-value for interacting gene-pair vs Null
- -aggregate p-values by Fisher's method

Or

Just take the edge and use the original edge score

SCENIC (genie3)

- *Genie3
- -Constructing gene-regulatory network (or Transcription Factor regulatory NW: TRN)
- -Based on Genie3 (developed for bulk RNA data)
- -output gene exp ← explained by input genes (random forest) [coexpression pattern]
- → TF filtering
- -output gene (i) ← input gene (j1, j2, j3) score → ranking (by importance)
- → GRNBoost for speed

SCENIC (genie3)

- -We obtained TF- target gene (correlation or association)
- → Not all the TF binds to the target gene
- → RcisTarget: cis-regulatory motif analysis
- → Only enriched TF can bind to the promoter of a given genes

*Regulon activity: AUCell

Regulon

Cell-Cell interaction (CellPhoneDB, CellChat)

- -Cluster-to-Cluster interaction
- → Measure the mean expression of receptor-ligand pair
- → Shuffle the cells: Null distribution
- → P-value measurement for each pair
- → Strength: mean expression
- + complex: mean expression

Cell-Cell interaction (CytoTalk)

What is the downstream of interaction?

- -Cell-cell interaction: intercellular interaction
- -Intra-cellular network: mutual information (co-occurrence of gene expression across cells)
- -Network propagation algorithm
- → Remain only the significant edges

Cell-Cell interaction (CellCall)

Framework of CellCall

Only looking at the gene expression from the ligand-receptor is not enough It should show some **perturbation of target genes** due to cell-cell interaction!

Interaction score = LR * TF_k

TF_k: regulon activity of TF

- -LR → TF: KEGG, etc
- -TF → regulon: known DB (TRRUST ...) & coexpressed with TF
- -TF_k: GSEA for those regulon
- -Multiple TF_k : weight sum (number of node; LR \rightarrow TF)

Cell-Cell interaction (NicheNet)

- -ligand ~ potential target genes vs bg genes
- -ligand ranking: ligand [exp] ~ predefined targets [gene exp] (how much ligand expression can differentially express target genes)
- -target genes are selected by a predefined ligand-target link

Output

Cell-Cell interaction comparison

-Heterogeneous DB

*KEGG, Reactome, STRING

*Published literature

Cell-Cell interaction comparison

A)

-Different CCC methods are too different

Low Jaccard index (low overlap)

- -across DB
- -across method

Pseudotime analysis (Monocle2)

Aligning cells into a virtual embedding

- -Dimension reduction → initial centroid (k-mean)
- → update cell position
- → High dimension → re-do until convergence

Conceptually: clustering + network construction

Gene: DEG (across differentiation), HVG ...

Pseudotime analysis (Monocle3)

Adapt dimension reduction space into a familiar UMAP projection

TradeSeq

What kind of genes are associated with a given trajectory

- -Pseudotime ~ Gene expression (correlation) → likely to be poor
- -Negative binomial generalized additive model (nonlinear approach)
- → but, super slow ...
- → Maybe, binning??

Velocyto, scVelo

Assumption: during the differentiation, progenitor may have more unspliced RNA while differentiated cell may have fully spliced form

- -Compare between unspliced/spliced ratio! (RNA velocity) for each gene
- -Merge all the velocities (from all the gene) → project on the user embedding space (UMAP)
- -Sum of transition P = 1 for each cell

*RNA velocity: steady-state approximation spliced RNA deg speed = splicing rate * unspliced RNA

$$rac{ds}{dt} = eta u - \gamma s$$

^{*}scVelo: those parameters change across time and cell states

PAGA (Representation)

- -Abstraction of trajectory (scvelo) result
 Using graph-based cell-cell similarity (→ connectivity calculated by trajectory)
- -PAGA transition confidence score: actual / random expected model

The confidence should be interpreted as the ratio of the actual versus the expected value of connections under the null model of randomly connecting partitions.

ImmuneDictionary