
Single-cell RNA-sequencing



GZMA: Tumor_CD8 T cell > Normal_CD8 T cell
→ Cytotoxic

HLA-DRA, HLA-DRB1, HLA-DPB1: Tumor_CD8 T cell > 
Normal_CD8 T cell
→ activated

• Differentially expressed gene analysis between two groups

- Wilcoxon rank sum test between two groups for each cell type (or cluster)

→ Nonparametric approach (does not require a specific distribution of data)

→ Adjusted p-value, average_Log2FC + expression cell ratio (pct.1, pct.2) 



• Geneset analysis
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Celltype1 Celltype2 …

→ Fisher’s exact test  or GSEA

→ Or measuring “signature score” for each cell

→ Kind of supervised dimension reduction (?)



• AddModuleScore

Single-cell1
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Signature1

Signature2

…

-Mean expression of a given geneset

-Each gene will be binned

-Subtracted by random (selected by each bin) noise
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• AUCell

-Order genes by expression for each cell

-Measure AUC for a given geneset
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Given genes (6,2,1: 9)

0.67

0.89

0

-Receiver operating characteristic 

(ROC) curve: performance 

measurement

-AUC: area under curve

→ Quantification



• ssGSEA & GSVA

*ssGSEA
-Order genes by expression for each cell

-Make a ECDF (empirical cumulative distribution function) 

for a given geneset and remaining genes, respectively

-Integration of difference between two ECDFs

*GSVA
-Order genes by expression for each cell

-Make a ECDF

-KS-test (Kolmogorov-Smirnov test)

Statistics by maximum difference



• Is not always good

Signature-scoring methods developed for bulk samples are not adequate for cancer single-cell 
RNA sequencing data

-Biased to cancer (upregulation >> down regulation)

-Robustness (against noise): Up > Down

-Robustness (against down-sampling): ssGSEA (worst)

Up Down



• cNMF 
(consensus non-negative matrix factorization)

*Unsupervised approach

NMF: Decomposition method

Make W,H be close to X

Gradient descending  



• cNMF 

X = WH

-X: gene expression (N x M)
N: cell, M: gene

-W: program usage (activity): N x k
k: number of program

-H: gene expression program: weight of each gene
k x M

Consensus → robustness

Take median value of each gene



• cNMF 

-Define density_threshold by 

KNN distance distribution

-K selection → stability: high, error: low

-Batch correction for input count matrix (harmony)

moe_correct_ridge (same algorithm in harmony)



• Signature analysis
Tumor infiltrating T cell → might be exhausted

Exhaustion signature: PDCD1, CTLA4, HAVCR2, LAG3, TOX

P value: 2.595e-05 

Normal Tumor

CD8 T cells

→ T cells in the tumor-microenvironment are exhausted



• Cell abundance
*T-test, Wilcoxon

Always! Relative abundance

Why? The cell counts for each sample is always different

Sample size is usually very small for scRNA-seq

→ Poor power analysis (less significant)

*Fisher’s exact test
-Comparing by group-level

-Very sensitive; high false-positive

*Dirichlet Regression
-one celltype ↑→ one celtype ↓

-prior reference 

celltype selection



• Cell abundance (MILO)

-KNN graph of cells

-Sampling to increase statistical power

-Perform enrichment test for each sampling

Which condition has more in the neighborhood



• Cell abundance (MILO)



• Cell-pooling

-High drop-out rate: zero count ↑

-merge cells → pseudo cell → averaging → 

overcome drop-out!



• Metacell

-balanced KNN graph construction 

-resampling → consensus-based partitioning

-remove outliers



• BBKNN

Difference by cell type > difference by batch in a given cell type

- KNN for whole data

- KNN across batch with smaller k

→ Batch corrected pooling



• Pseudobulk DE analysis

Confronting false discoveries in single-cell differential expression

-Extreme case

-Generate a pseudobulk for each sample (each cell type)

→ Perform bulk DE analysis (DESeq2, Limma, edgeR …)

-Overcome high dropout

-susceptible to outlier cells

-cannot account for expressing cell ratio



• Network analysis in scRNA-seq

-Skewed too much to zero-counts

→  Hard to obtain a suitable correlation

Cell-type-specific co-expression inference from single cell RNA-sequencing data



• BigScale2

-High granularity clustering: Recursive clustering (Hierarchical clustering)

-all pairwise comparison → DE → measure Z-score for each gene

→ Correlation (similar effect of cell-pooling)



• scHumanNet

-Filtering out the “cell-type-specific” 

network from the reference network

-HumanNetv3, String

*SCINET framework

-clustering → Archetype → transcriptome 

interpolation (smoothing)

-gene expression transformation

→ Better distribution

-subsampling (per cell type)

-p-value for interacting gene-pair vs Null

-aggregate p-values by Fisher’s method

Or

Just take the edge and use the original 

edge score



• SCENIC (genie3)

*Genie3

-Constructing gene-regulatory network (or Transcription Factor regulatory NW: TRN)

-Based on Genie3 (developed for bulk RNA data)

-output gene exp  explained by input genes (random forest) [coexpression pattern] 

→ TF filtering

-output gene (i)  input gene (j1, j2, j3) score → ranking (by importance)

→ GRNBoost for speed



• SCENIC (genie3)

-We obtained TF- target gene (correlation or association)

→ Not all the TF binds to the target gene

→ RcisTarget: cis-regulatory motif analysis 

→ Only enriched TF can bind to the promoter of a given genes

*Regulon activity: AUCell

TF

Regulon



• Cell-Cell interaction (CellPhoneDB, CellChat)
-Cluster-to-Cluster interaction

→ Measure the mean expression of 

receptor-ligand pair

→ Shuffle the cells: Null distribution

→ P-value measurement for each pair

→ Strength: mean expression

+ complex: mean expression



• Cell-Cell interaction (CytoTalk)

What is the downstream of interaction?

-Cell-cell interaction: intercellular interaction

-Intra-cellular network: mutual information

(co-occurrence of gene expression across cells)

-Network propagation algorithm

→ Remain only the significant edges



• Cell-Cell interaction (CellCall)

Only looking at the gene expression from the ligand-receptor is not enough

It should show some perturbation of target genes due to cell-cell interaction!

Interaction score = LR * TFk

TFk: regulon activity of TF

-LR → TF: KEGG, etc 

-TF → regulon: known DB (TRRUST …) & coexpressed with TF

-TFk: GSEA for those regulon

-Multiple TFk : weight sum (number of node; LR → TF)

LR: conceptually mean expression



• Cell-Cell interaction (NicheNet)

Typical CCC

NicheNet

-Merge each path from DB: weighted network (prior model)

Ligand – receptor – TF – target genes

-ligand ~ potential target genes vs bg genes

-ligand ranking: ligand [exp] ~ predefined targets [gene exp]

(how much ligand expression can differentially express target genes)

-target genes are selected by a predefined ligand-target link



• Cell-Cell interaction comparison

-Heterogeneous DB

*KEGG, Reactome, STRING

*Published literature



• Cell-Cell interaction comparison

-Different CCC methods are too different

Low Jaccard index (low overlap)

-across DB

-across method



• Pseudotime analysis (Monocle2)

Aligning cells into a virtual embedding

-Dimension reduction → initial centroid (k-mean)

→ update cell position

→ High dimension → re-do until convergence

Conceptually: clustering + network construction

Gene: DEG (across differentiation), HVG …

*Require root cell or cluster



• Pseudotime analysis (Monocle3)

Adapt dimension reduction space 

into a familiar UMAP projection



• TradeSeq

What kind of genes are associated with a given trajectory

-Pseudotime ~ Gene expression (correlation) →  likely to be poor

-Negative binomial generalized additive model (nonlinear approach)

→ but, super slow …

→ Maybe, binning??



• Velocyto, scVelo

unspliced

spliced

Assumption: during the differentiation, progenitor may have 

more unspliced RNA while differentiated cell may have fully 

spliced form

-Compare between unspliced/spliced ratio! (RNA velocity) for 

each gene

-Merge all the velocities (from all the gene) → project on the 

user embedding space (UMAP)

-Sum of transition P = 1 for each cell

*RNA velocity: steady-state approximation             

spliced RNA deg speed = splicing rate * unspliced RNA

- Spliced RNA * degradation rate = 0

*scVelo: those parameters change across time and cell states



• PAGA (Representation)

-Abstraction of trajectory (scvelo) result
Using graph-based cell-cell similarity (→ connectivity calculated by trajectory)

-PAGA transition confidence score: actual / random expected model

The confidence should be interpreted as the ratio of the actual versus the expected 
value of connections under the null model of randomly connecting partitions. 





• ImmuneDictionary
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