
Perturb-sequencing



• AI in scRNA-seq

Artificial Intelligence in Bulk and Single-Cell RNA-Sequencing Data to Foster Precision Oncology



• AI in scRNA-seq

Large language model

Computer vision



• AI in scRNA-seq

?



• Simulation

-Simulation: provides ground-truth for method development



• GAN

-Noise: Gaussian distribution

-Generator: make fake Money → similar to real money

-Discriminator: distinguish between fake and real (train first)

→ finally 0.5 vs 0.5 (cannot distinguish)

→ After training, generator can simulate the data

-Generative Adversarial Networks 



• GAN



• Simulation

-Discriminator: distinguish between fake and real



• Simulation



• Simulation

-Add GRN information together (TF → gene)

→ Gene expression + GRN



• Simulation

-Statistic model can be also used for simulation

Multi-modality: rna, atac, methyl, spatial (spot, cell)

→ Require specific statistic model



• Perturbation



• Gene KO experiment



• CRISPR-Cas9

Guide RNA → detect the target region

→ Cas9 cut the DNA

→ Repair → Gene KO



• Perturb-seq



• Perturb-seq

-Each sgRNA: Guide barcode (GBC) → which will be expressed → detect during the alignment 

-Each sgRNA → each cell (cell barcode)

-Each cell: different genetic perturbation

-Obtain various perturbation of cells at the same time 



• Perturb-seq

*Technical comments

- 3 guides / gene (different part of the gene)
- Negative ctrl: non-target gRNA: do not target the genome, targeting intergenic region
- Pre-sorting: sgRNA+, Cas9+, CD8+, viable cells → FACS sorting
But! gRNA drop out + multiple guides 

X: gRNA exp
Y: target gRNA / total gRNA (proportion)

→ Both high expression → good cell!

-target gene expression after on target gRNA 
→ Negatively correlated (target → KO → no expression



• Perturbation modeling



• scGen

-Variational AutoEncoder (VAE) based → simulation-based perturbation effect size



• scGen

-Input: gene expression → Encoder → Gaussian distribution (latent space)

→ Random noise sampling → Decoder → output (simulated gene expression)

*** Make “Input” & “Output” the same

→ Latent space: abstract of perturbation

→ Perturb – unperturb from latent space → perturbation effect size 



• CPA

-Input: gene expression, perturbation label (dosage), covariates

Encoder → z: perturbation emb + covariate emb + dosage_emb

Loss fn: reconstruction error 

Cross entropy: [f(z_latent) & perturb category] + [f(z_latent), cov]

→ Latent space: can distinguish perturbation & covariable



• CPA

Decoder

1)Latent space (perturbed, non-perturbed: covariates)

→ Binary perturbation classification or multiple perturbation (multiple drug)

2)Dosage effect or time-dependent

3)Unseen drug prediction

4)drug-combination prediction

-Add Drug structure information



• ContrastiveVI

-VAE based
-Shared space: drug treatment (DMSO, drug) → well mixed
Perturbed space: WT, p53 Mut classification
-cell type-specific response



• Biolord

Cross entropy MSE

-(known*unknown) Decomposed latent space: reconstruction error optimization

Completeness term: negative log-likelihood loss (NLL) per distribution

-Unknown attribute: L2 norm

Information sharing between known & unk

supervised

Missing label
Semi-supervised

-Input distribution

Zu + n (gaussian noise)

Log-norm→ gaussian

Raw count → ZINB

Peak → poisson

-Missing label semisupervised learning
C: classifier for categorical attribute (Cross Ent)
R: regressor for ordinal attribute (MSE)



• CINEMA-OT

-Optimal transport algorithm based

-Move A → B

(cost function)



• Foundation model in scRNA-seq

-Too many task

-Cannot train all kinds of task

→ Build versatile, general model for “every” task

→ Build with large enough data and parameters

-Training: autoregressive (self-supervised)

-Fine-tuning: same task, new data

-Prompt engineering: zero-shot learning



• Cell2Sentence

-Gene → log-norm → rank

-Celltype → gene sentence (convert embedding)

(Fine tuning by preexisting LLM: GPT-2)

-Usage: user cell type (text)

→ Cell type information (ex: marker genes) 



• Cell2Sentence



• CellWhisper

Geo (bulk data)

Transcriptome data (exp model: Geneformer)

Description (language model: BioBERT)

→ Joint space

Data is pairwise (description~transcriptome)

Contrast learning (cosine similarity)

→Only pair → short distance

→Wrong pair → long distance

→Loss function

-Text → gene expression, celltype, tissue … 



• Constrastive learning in scRNA-seq (text processing)



• Foundation model in scRNA-seq

- Attention score

→ gene-gene network

-Transformer based

→ Autoregressive learning: decoder → 

recapitulate the gene expression



- How to give positional information

-masked attention → predict masked gene exp

(endocder)

-Self-attention in decoder → predict next gene

• Foundation model in scRNA-seq



• Future direction of AI field in single-cell data

Toward a foundation model of causal cell and tissue biology with a Perturbation Cell and Tissue Atlas

-In-silico experiment for unseen perturbation

→ Experimental validation

→ New hypothesis

→ In-silico experiment



• Limitation of foundation model in scRNA-seq
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