Perturb-sequencing

Al in scRNA-seq

Al in scRNA-seq

Large language model

Computer vision

Al in scRNA-seq

-Simulation: provides ground-truth for method development

GAN

-Generative Adversarial Networks

- -Noise: Gaussian distribution
- -Generator: make fake Money → similar to real money
- -Discriminator: distinguish between fake and real (train first)
- → finally 0.5 vs 0.5 (cannot distinguish)
- → After training, generator can simulate the data

• GAN

Article Open access Published: 09 January 2020

Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks

-Discriminator: distinguish between fake and real

nature communications

Article https://doi.org/10.1038/s41467-0

GRouNdGAN: GRN-guided simulation of single-cell RNA-seq data using causal generative adversarial networks

- -Add GRN information together (TF → gene)
- → Gene expression + GRN

nature biotechnology

Brief Communication

https://doi.org/10.1038/s41587-023-01772-1

scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics

			munipic butories
	Gamma-	Poisson, ZIP	Poisson, ZIP
Feature distribution	Normal	NB, ZINB	NB, ZINB
	mixture		Bernoulli, Normal
Continue mann function	Ctan function5	Ctan function	Cton function

- -Statistic model can be also used for simulation Multi-modality: rna, atac, methyl, spatial (spot, cell)
- → Require specific statistic model

Perturbation

Gene KO experiment

B Tissue-specific Knockout mouse

CRISPR-Cas9

Guide RNA → detect the target region

- → Cas9 cut the DNA
- → Repair → Gene KO

Perturb-seq

Hesource

Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens

Graphical Abstract

Authors

Atray Dixit, Oren Parnas, Biyu Li, ..., Jonathan S. Weissman, Nir Friedman, Aviv Regev

Correspondence

aregev@broadinstitute.org

In Brief

A technology combining single-cell RNA sequencing with CRISPR-based perturbations termed Perturb-seq makes analyzing complex phenotypes at a large scale possible

Perturb-seq

- -Each sgRNA: Guide barcode (GBC) → which will be expressed → detect during the alignment
- -Each sgRNA → each cell (cell barcode)
- -Each cell: different genetic perturbation
- -Obtain various perturbation of cells at the same time

Perturb-seq

- *Technical comments
- 3 guides / gene (different part of the gene)
- Negative ctrl: non-target gRNA: do not target the genome, targeting intergenic region
- Pre-sorting: sgRNA+, Cas9+, CD8+, viable cells → FACS sorting
- But! gRNA drop out + multiple guides

X: gRNA exp

Y: target gRNA / total gRNA (proportion)

→ Both high expression → good cell!

-target gene expression after on target gRNA

 \rightarrow Negatively correlated (target \rightarrow KO \rightarrow no expression

Perturbation modeling

scGen

-Variational AutoEncoder (VAE) based → simulation-based perturbation effect size

scGen

- -Input: gene expression → Encoder → Gaussian distribution (latent space)
- → Random noise sampling → Decoder → output (simulated gene expression)
- *** Make "Input" & "Output" the same
- → Latent space: abstract of perturbation
- → Perturb unperturb from latent space → perturbation effect size

CPA

-Input: gene expression, perturbation label (dosage), covariates Encoder → z: perturbation emb + covariate emb + dosage_emb

Loss fn: reconstruction error

Cross entropy: [f(z_latent) & perturb category] + [f(z_latent), cov]

→ Latent space: can distinguish perturbation & covariable

CPA

Decoder

- 1)Latent space (perturbed, non-perturbed: covariates)
- → Binary perturbation classification or multiple perturbation (multiple drug)
- 2)Dosage effect or time-dependent
- 3)Unseen drug prediction
- 4)drug-combination prediction

-Add Drug structure information

ContrastiveVI

-VAE based

-Shared space: drug treatment (DMSO, drug) → well mixed

Perturbed space: WT, p53 Mut classification

-cell type-specific response

Biolord

-(known*unknown) Decomposed latent space: reconstruction error optimization Completeness term: negative log-likelihood loss (NLL) per distribution

-Unknown attribute: L2 norm

Information sharing between known & unk

CINEMA-OT

-Optimal transport algorithm based-Move A → B(cost function)

Foundation model in scRNA-seq

- -Too many task
- -Cannot train all kinds of task
- → Build versatile, general model for "every" task
- → Build with large enough data and parameters

-Training: autoregressive (self-supervised)

-Fine-tuning: same task, new data

-Prompt engineering: zero-shot learning

Tasks

Cell2Sentence

- -Gene → log-norm → rank
- -Celltype → gene sentence (convert embedding)
- (Fine tuning by preexisting LLM: GPT-2)
- -Usage: user cell type (text)
- → Cell type information (ex: marker genes)

Cell2Sentence

Input single-cell data

Cell2Sentence and LLM fine-tuning

"CD4+ T-cell in Human PBMC CD3E CD4 IL2RA ... IFNG [NEXT]" "CD8+T-cell in Breast Cancer CD8A GZMB PRF1 ... PD1 [NEXT]" 'Monocyte in Lupus CD14 CCR2 TNF ... IL6 [NEXT]" 'Hepatocyte in liver tissue ALB CYP3A4 CYP2E1 ... AFP [NEXT]"

"Beta Cell in Type 1 Diabetes INS PDX1 GCK ... GLUT2 [NEXT]"

Generate cell sentences via prompting Generated single-cell data

Cell Type Generation

Prompt: Generate the 100 highest expressed genes listed in descending order for a long-lived plasma cell

Response: MT-V1 RPS9 [...] RPS9 RPL8

Cell Label Prediction

Prompt: Identify the cell type most likely associated with these 100 highly expressed genes listed in descending order: DIF3 RPS11 [...] RPP4 RPS22 Response: The cell type corresponding to these

genes is a CD4-T cell.

Natural Language Insights from Data

Prompt: Extract and summarize biological insights given this cell's 100 highest expressed genes: MALAT1 VIM [...] RPL10A S100A6

Response: This study used single-nucleus RNA sequencing to comprehensively map the cell types in the adult human brain.

CellWhisper

JOINT EMBEDDING OF TRANSCRIPTOMES AND TEXT ENABLES INTERACTIVE SINGLE-CELL RNA-SEQ DATA EXPLORATION VIA NATURAL LANGUAGE

Geo (bulk data)

Transcriptome data (exp model: Geneformer)

Description (language model: BioBERT)

→ Joint space

Data is pairwise (description~transcriptome)

Contrast learning (cosine similarity)

- → Only pair → short distance
- → Wrong pair → long distance
- → Loss function

-Text → gene expression, celltype, tissue ...

Constrastive learning in scRNA-seq (text processing)

Foundation model in scRNA-seq

- -Transformer based
- → Autoregressive learning: decoder → recapitulate the gene expression

- Attention score
- → gene-gene network

Foundation model in scRNA-seq

- How to give positional information

- -masked attention → predict masked gene exp (endocder)
- -Self-attention in decoder → predict next gene

Future direction of AI field in single-cell data

- -In-silico experiment for unseen perturbation
- → Experimental validation
- → New hypothesis
- → In-silico experiment

Limitation of foundation model in scRNA-seq

nature methods

Brief Communication

https://doi.org/10.1038/s41592-025-02772-6

Deep-learning-based gene perturbation effect prediction does not yet outperform simple linear baselines

Received: 11 October 2024 Constantin Ahlmann-Eltze © 12,3 🖂, Wolfgang Huber © 2 & Simon Anders © 1

Accepted: 24 June 2025

Published online: 4 August 2025

Charleformalism

Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects