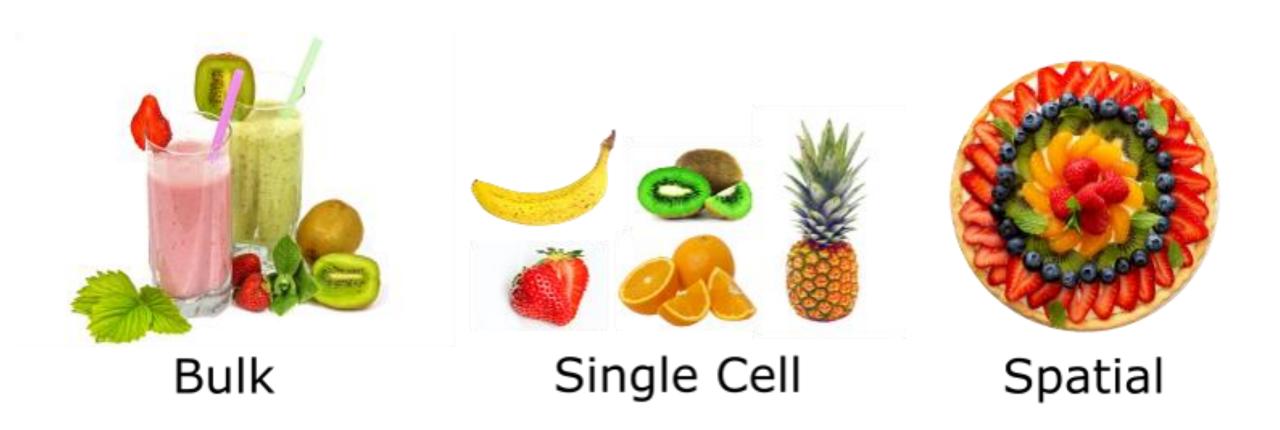
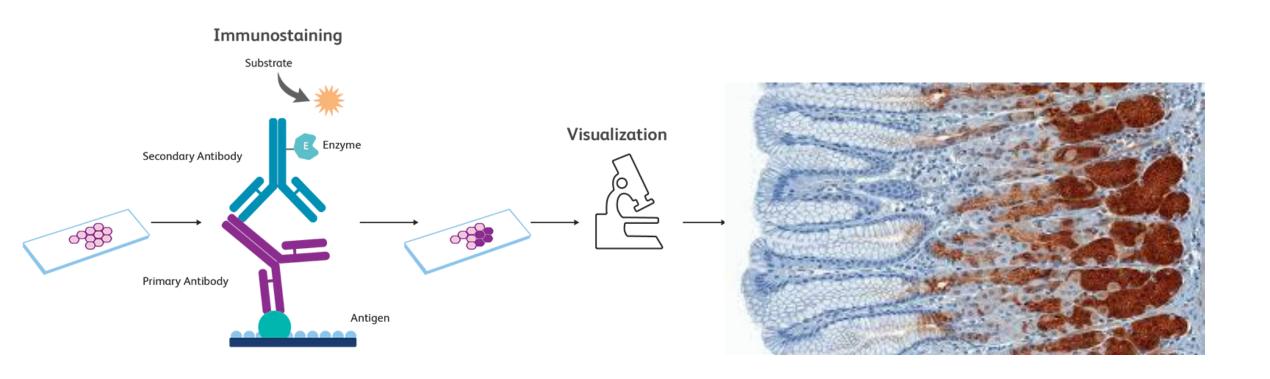
Spatial transcriptomics 1

• Why spatial transcriptomics?

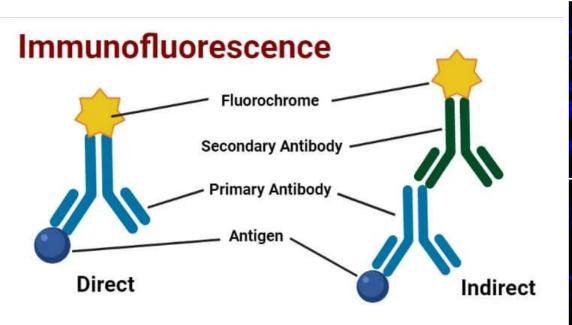


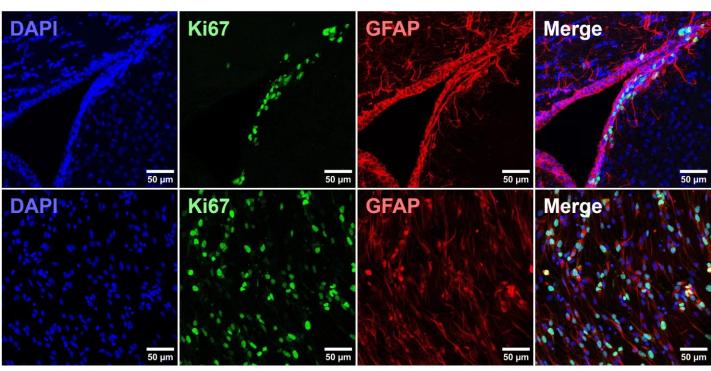
Previous method

-Immunohistochemisty



- Previous method
- -ImmunoFluoresence



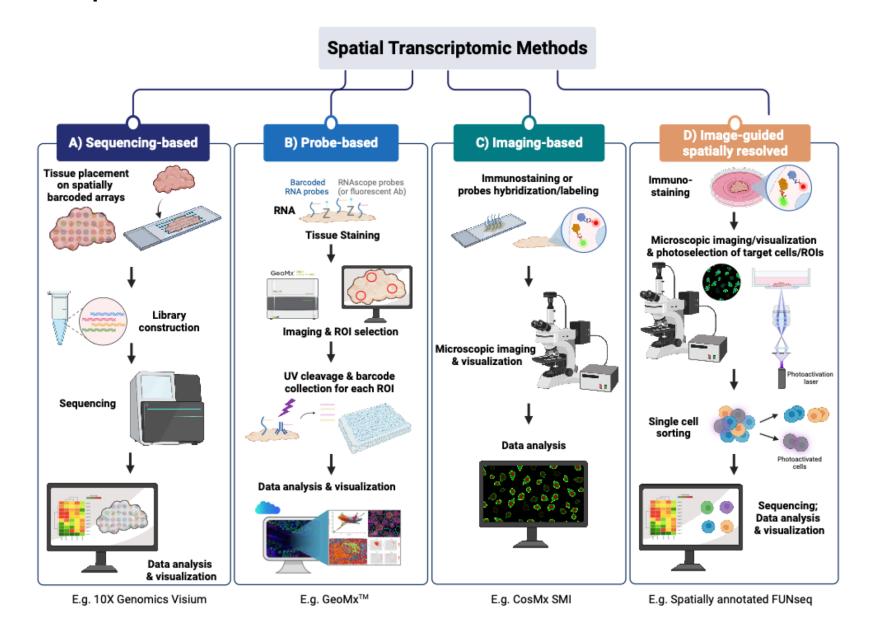


Previous method

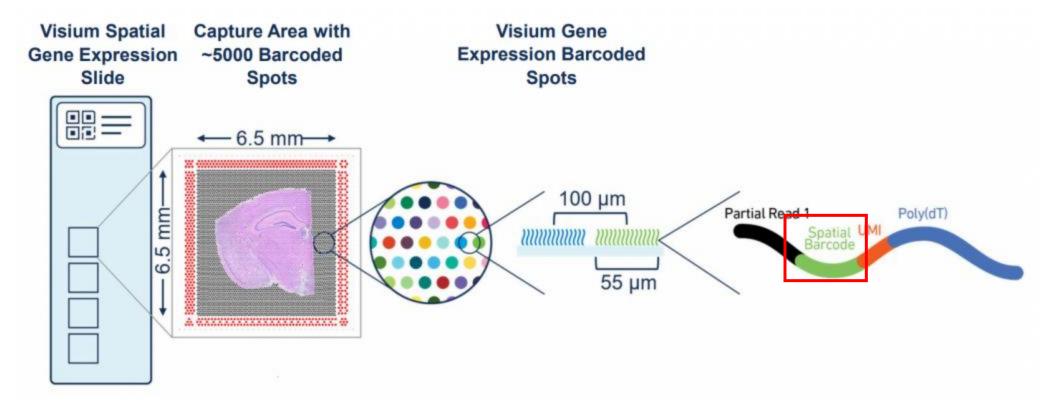
-IHC vs IF

Immunofluorescence (IF)	Immunohistochemistry (IHC)	
Fluorescence microscope	Light microscope	
Fluorescent dyes	Enzyme-substrate reaction	
Generally higher	Generally lower	
Easier	More challenging	
Specialized	Standard	
	Fluorescence microscope Fluorescent dyes Generally higher Easier	

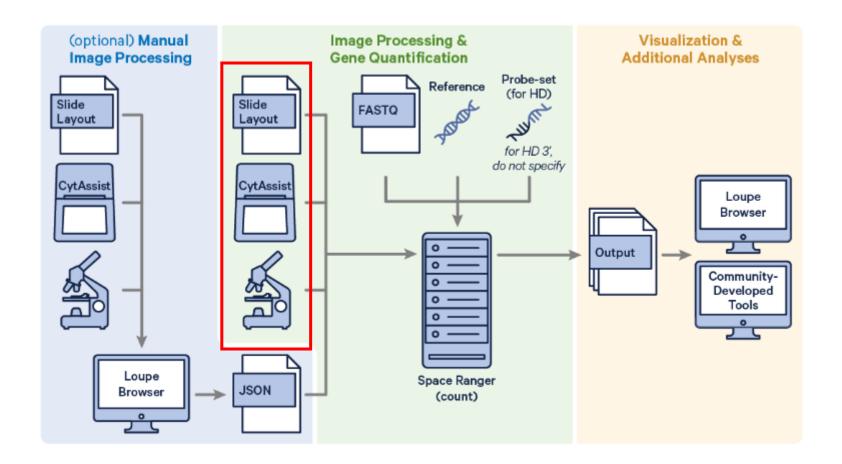
Various techniques



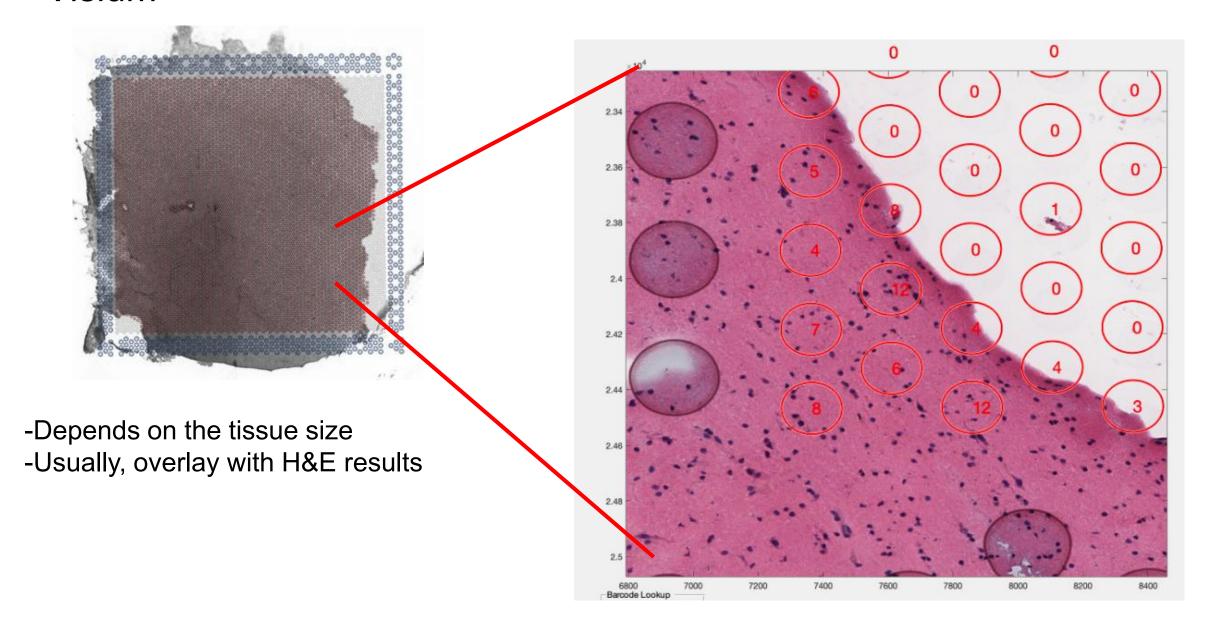
- Spot-based spatial transcriptomics
- -Visium (10x), GeoMx (NanoString)



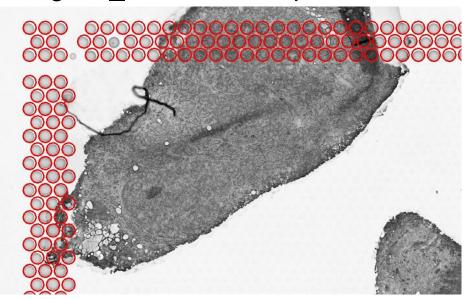
-Spatial barcode on each spot → instead of cell barcode, we could detect each spot (spatial location) Center – center: 100 um



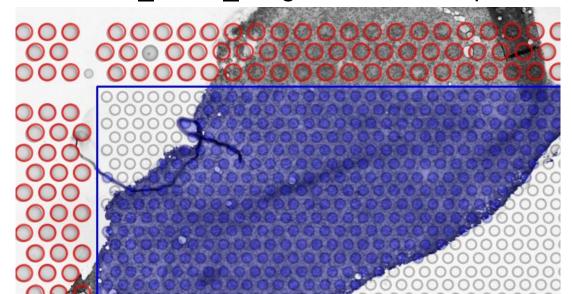
- -Spatial data require spatial images for processing
- -spaceranger count
- → Count matrix (same as scRNA-seq) + spatial information



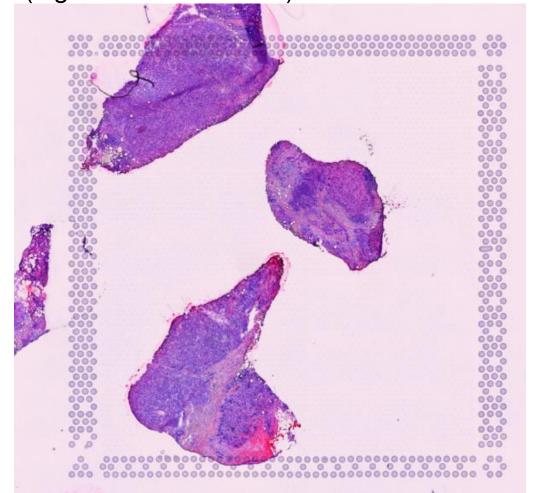
- Aligned_fiducial: bullet point of the imaging focusing → boundary of the sample



- Detected_tissue_image → detected spots

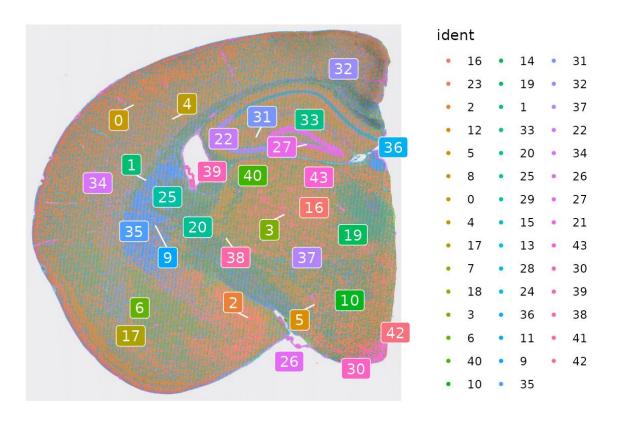


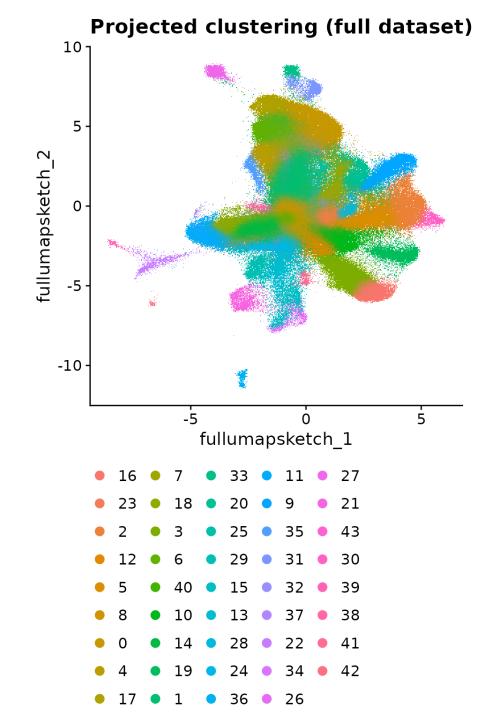
- Tissue_image: H&E staining (high or low resolution)



Visium (Data processing)

- -Normalization (log-norm) or SCTransform
- -FindVariableFeatures
- -ScaleData
- -PCA, neighbor graph, clustering, UMAP ...

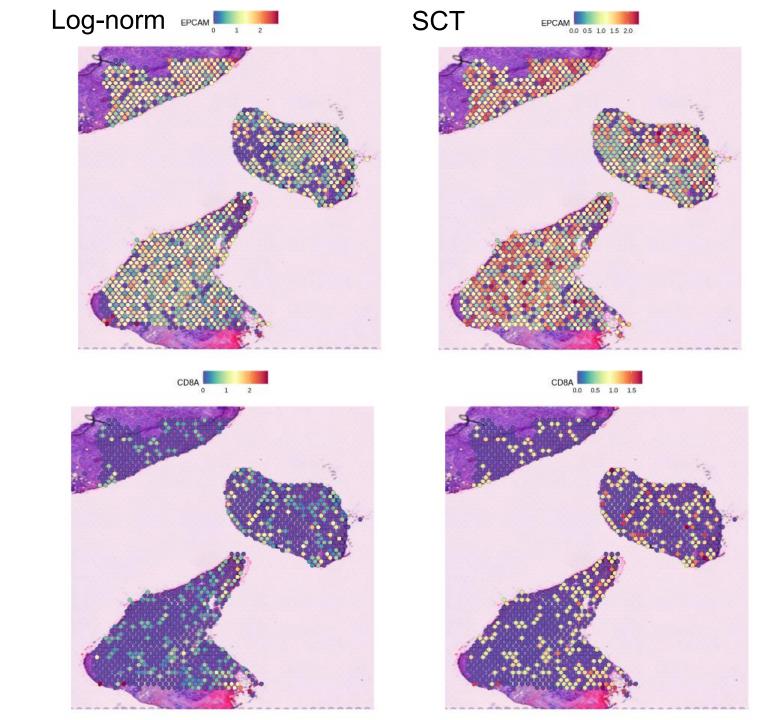




Visium (Data processing)

Log norm vs SCTransform

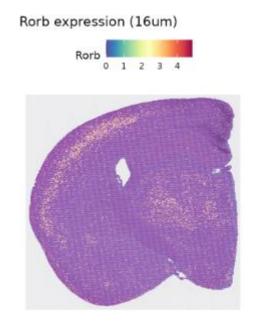
→ SCTransform make low signal → high (higher sensitivity)

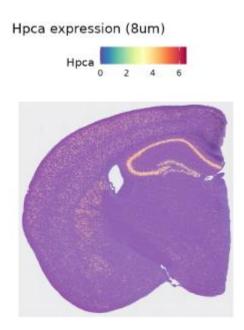


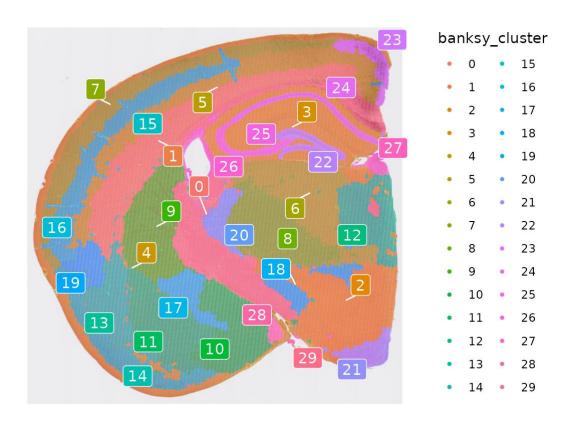
Visium (Data processing)

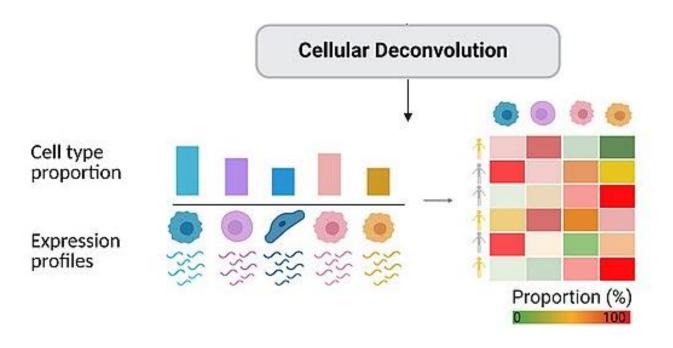
-SpatialFeaturePlot

-Spatialcluster





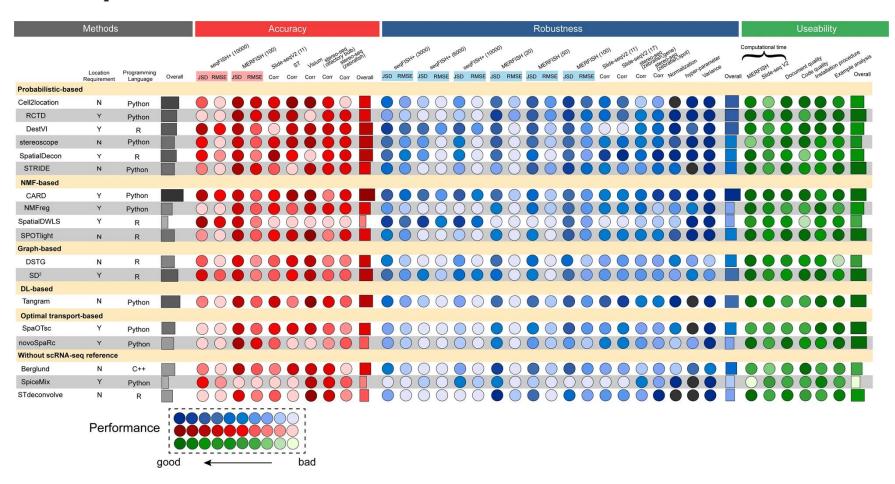


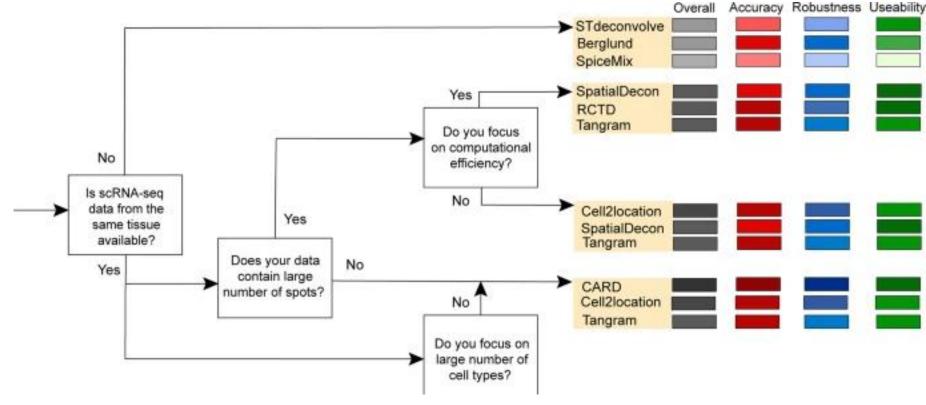


Spatial data for each spot

- → Aggregate of a few cells
- → Deconvolute the signals into each cell type

A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics





experimental conditions. Nevertheless, each method category contained at least one high-performing method. In general, CARD, Cell2location, Tangram, and RCTD were the best performing methods. Compared with the existing benchmarking studies 8,9, our study included most number of existing methods. More importantly, we provided a full-scale

- Visium (Deconvolution)
- -scRNA-seq based
- → generate reference cell type specific signature matrix

Article | Published: 02 May 2022

Spatially informed cell-type deconvolution for spatial transcriptomics

Conditional AutoRegressive Model-based Deconvolution

$$\begin{split} \textbf{\textit{X}} &= \textbf{\textit{B}} \textbf{\textit{V}}^{T} + \textbf{\textit{E}}, \textbf{\textit{E}}_{gi} {\sim} \textit{N}(0, \sigma_{e}^{2}) \\ \textbf{\textit{V}}_{ik} &= \textbf{\textit{b}}_{k} + \phi \sum\nolimits_{j=1, j \neq i}^{n} \textbf{\textit{W}}_{ij} \big(\textbf{\textit{V}}_{jk} - \textbf{\textit{b}}_{k} \big) + \epsilon_{ik} \quad + \quad \text{Gaussian} \\ \epsilon_{ik} {\sim} \textit{N}(0, \sigma_{ik}^{2}) \end{split}$$

B: mean exp per celltype

V: N(spot) ~ celltype (proportion)

X: spatial data, E: error (gaussian)

$$X = BV^T + E$$

X: real gene expression (scRNA-seq)

$$V_{ik} = b_k + \phi \sum_{j=1, j
eq i}^n W_{ij} \left(V_{jk} - b_k
ight) + \epsilon_{ik},$$

V: overall cell-composition + autocorrelation (high autocorrelation → similar cell composition)

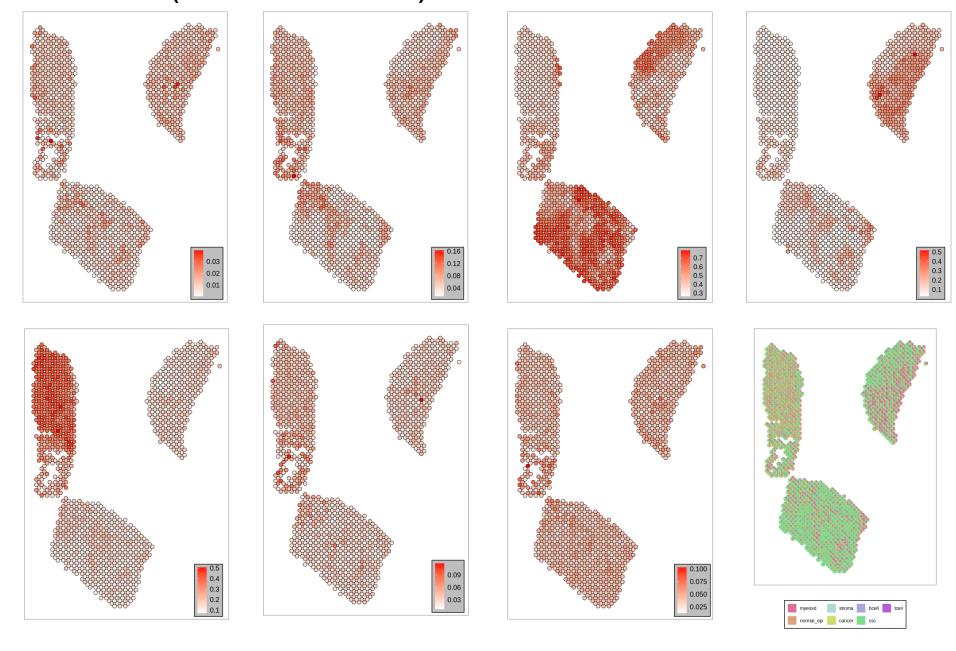
Yang et al. Genome Biology (2024) 25:304 https://doi.org/10.1186/s13059-024-03441-1 Genome Biology

METHOD Open Access

SMART: spatial transcriptomics deconvolution using marker-gene-assisted topic model

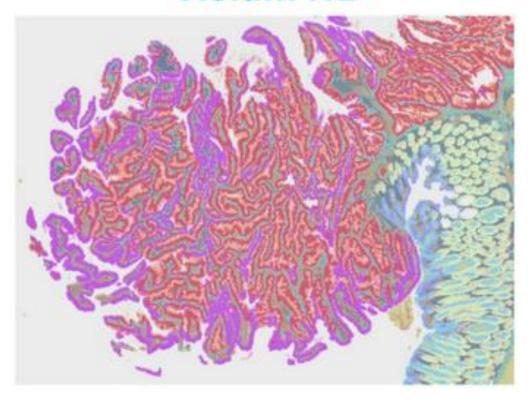
MARker-gene-assisted Topic model (SMART)

- -scRNA-seq based → batch problem (ex: scRNA-seq & spatial data is not paired sample)
- → Marker-based (celltype-specifc marker gene list)



Visium

Visium HD

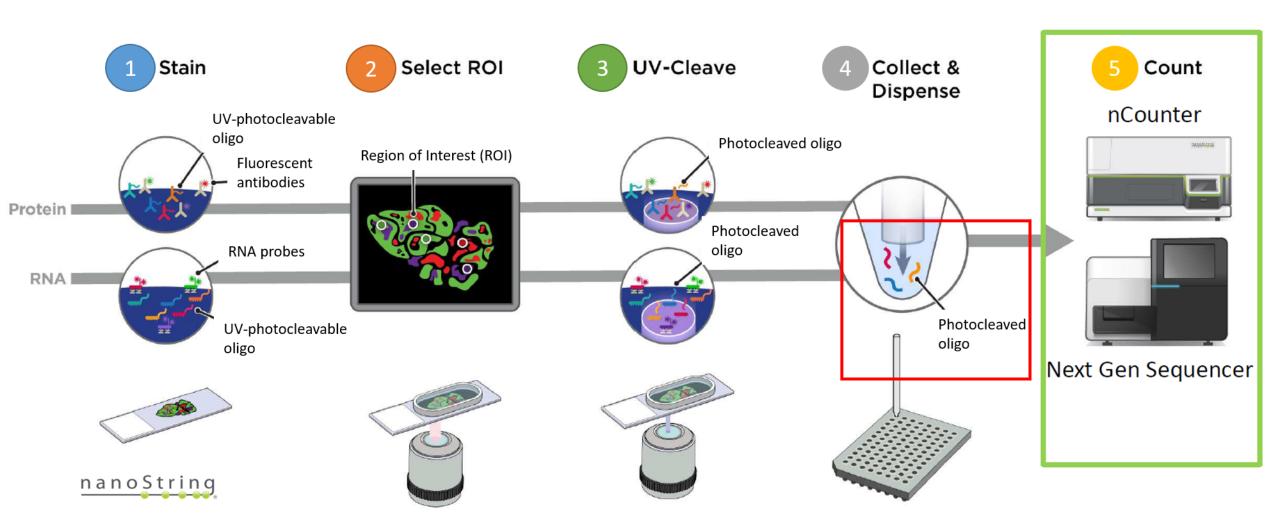


-Visium: 55um spot → multiple cells

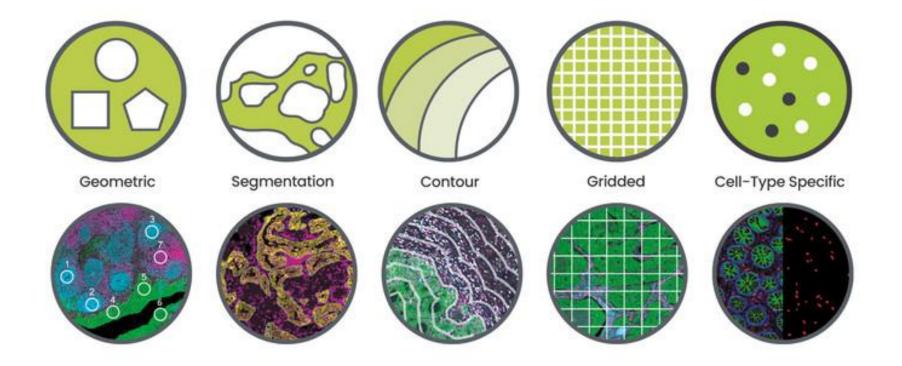
-Visium HD: 2um → subcellular

GeoMx

GeoMx DSP with nCounter or Next Gen Sequencer Workflow

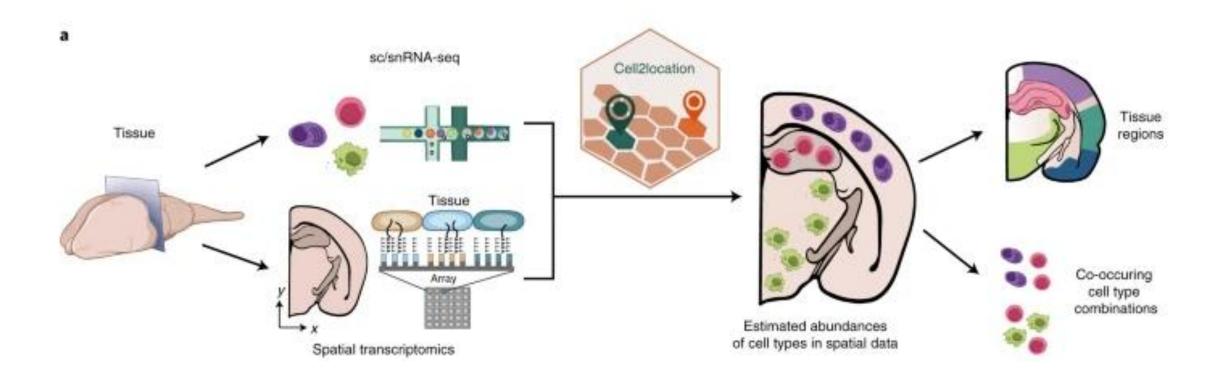


GeoMx



- Region of Interest (ROI)
- -10~600um: typically, 20~300 cells

- GeoMx (deconvolution)
- -Cell2location
- -scRNA-seq based (reference cell type specific signature matrix)
- negative binomial regression



Cell size

cell type	average volume (µm³)	BNID
sperm cell	30	109891, 109892
red blood cell	100	107600
lymphocyte	130	111439
neutrophil	300	108241
beta cell	1,000	109227
enterocyte	1,400	111216
fibroblast	2,000	108244
HeLa, cervix	3,000	103725, 105879
hair cell (ear)	4,000	108242
osteoblast	4,000	108088
alveolar macrophage	5,000	103566
cardiomyocyte	15,000	108243
megakaryocyte	30,000	110129
fat cell	600,000	107668
oocyte	4,000,000	101664

- -Lymphocyte: diameter: ~10um
- → Cell size is important for spatial transcriptomics
- → Spot size is fixed
- → Variability between different spots for cellular content

Macrophage: too big!

-Visium: ~20 cells

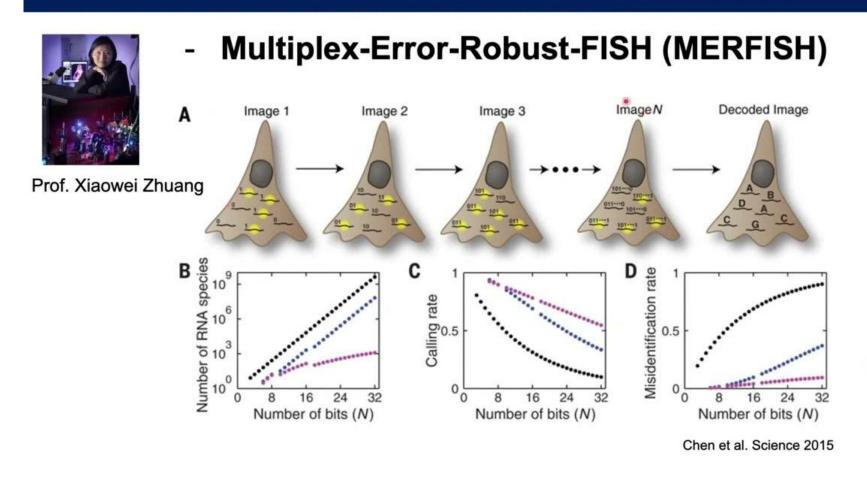
Center-to-center: 100um

-GeoMx: 20~300 cells

- →only spatial profiling
- → No cellular analysis

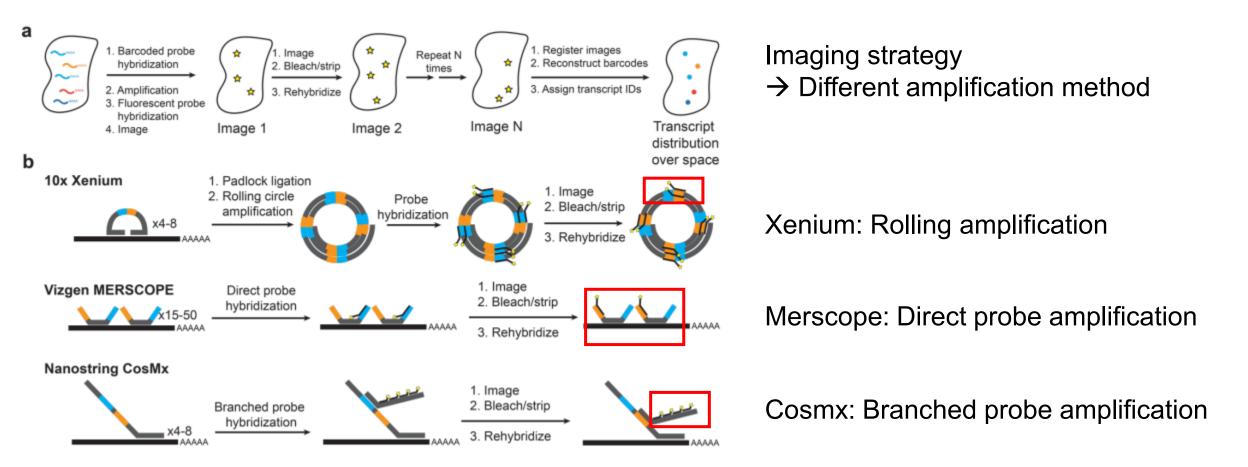
Probe-based spatial transcriptomics

How MERFISH Works



- MERFISH, , MERSCOPE, COSMX, XENIUM
- → Subcellular resolution → cellular analysis is possible

Probe-based spatial transcriptomics



cf) typically: FFPE blocks → may lead to poor RNA integrity

CosMx

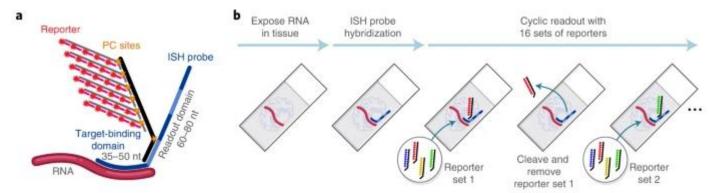
nature biotechnology

nature > nature biotechnology > articles > article

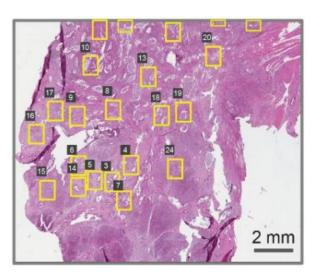
Explore content > About the journal > Publish with us >

Article Published: 06 October 2022

High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging



- *Technical procedure
- -Wide field laser
- -Stage moving system → each FOV imaging (Field of view)
- -Objective (water → trash)

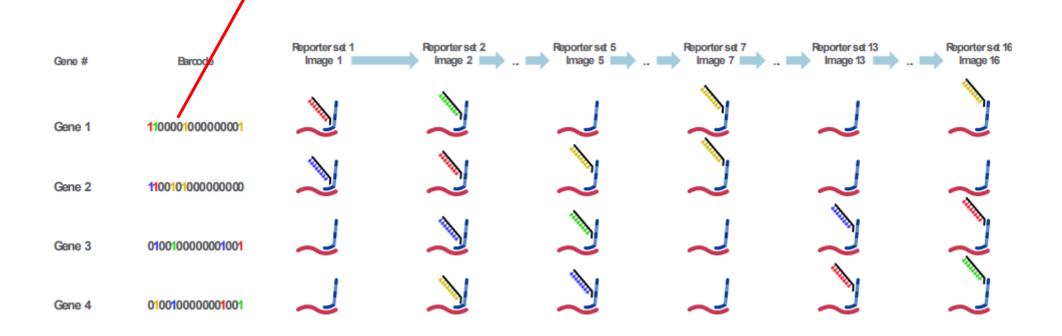


CosMx

*RNA barcode

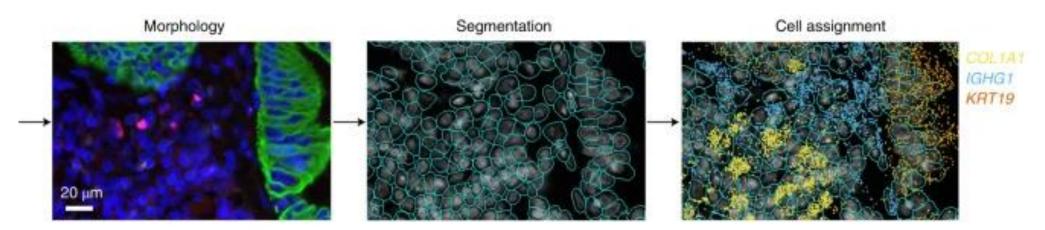
-4 reporter + "off" (16round → 16-serial barcode) → UV fluorescence

-Hamming distance (barcode similarity) > 4 (HD4) → 1210 barcode



CosMx

- *Image reconstruction
- 1) Image stacking (z-direction) → 2D Laplacian of Gaussian filter (increase optical resolution) → fluorescnece background correction
- 2) Gene assignment: integrate the signals within 0.5 pixel (90nm)
- 3) cell segmentation: DAPI (nucleus), PANCK (epithelial cell), CD3, CD298
- + Cellpose



Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues

Huan Wang^{1,*}, Ruixu Huang^{2,*}, Jack Nelson^{1,*}, Ce Gao³, Miles Trans³, Anna Yeaton⁴, Kristen

Broad Institute, BWH bioRxiv: 20231208

Felt⁵, Kathleen L. Pfaff⁶, Teri Bowman⁷, Scott J. Rodig^{6,7}, Kevin Wei^{,3,7}, Brittany A. Goods^{2,**},

Samouil L. Farhi^{1,**}

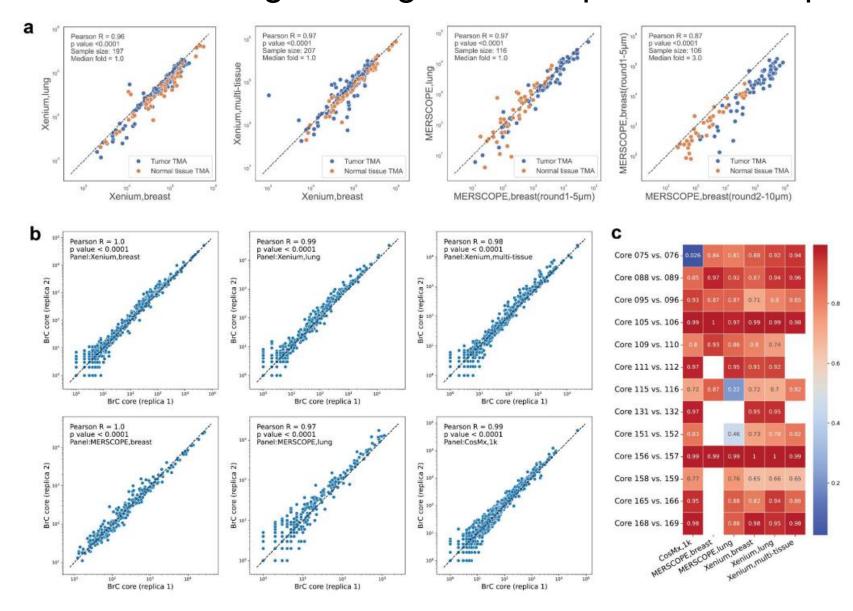
A Comparative Analysis of Imaging-Based Spatial Transcriptomics Platforms

David P. Cook¹, Kirk B. Jensen^{2,3,4}, Kellie Wise^{2,3}, Michael J. Roach^{2,3}, Felipe Segato Dezem^{6,7}, Natalie K. Ryan^{3,5}, Michel Zamojski⁹, Ioannis S. Vlachos^{10,11,12}, Simon R. V. Knott^{13,14}, Lisa M. Butler^{3,5}, Jeffrey L. Wrana^{1,15}, Nicholas E. Banovich¹⁶, Jasmine T. Plummer^{6,7,8*}, Luciano G. Martelotto^{2,3*}

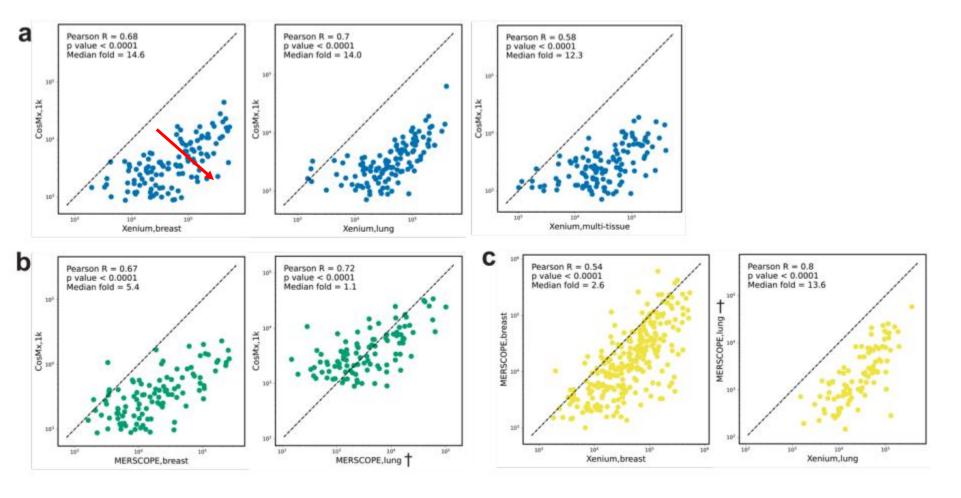
South Australia bioRxiv: 20231214

Total transcript: Xenium > Cosmx > Merscope Number of cells: Xenium > Merscope > Cosmx

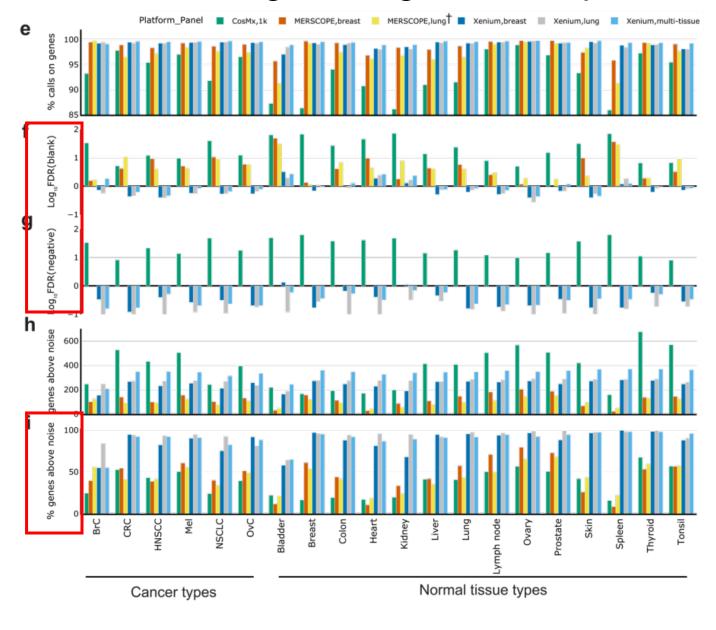
A				
	Xenium Rep 1	Xenium Rep 2	CosMx Rep 1	CosMx Rep 2
Gene target #	377	377	1000	1000
Total cell coun	99,852	102,508	96,139	98,767
Median gene count per cell	33	34	75	71
Median transcript count per cell	88	92	113	99
Median transcript count gene target coun	0.23	0.24	0.11	0.10
Median transcript coun (intersecting targets only	23	24	8	7



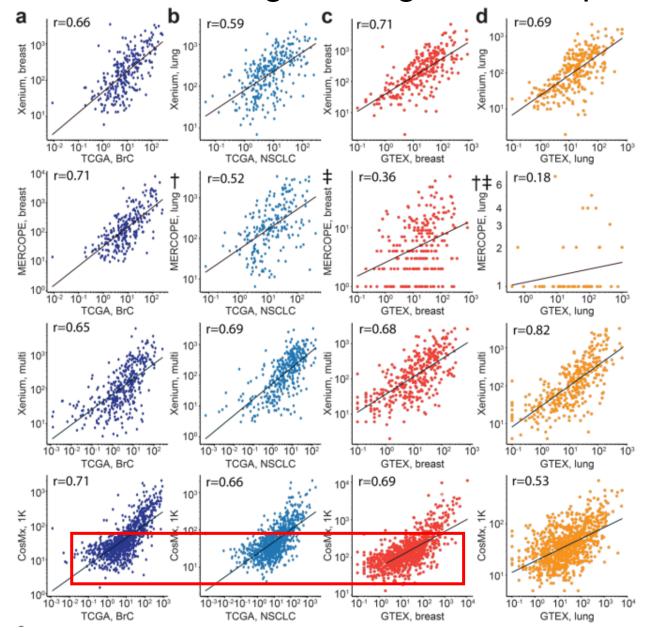
Total transcript / gene ← pseudo-bulk from each core Intra-platform reproducibility (same patient, different core) → very good



Xenium is always better



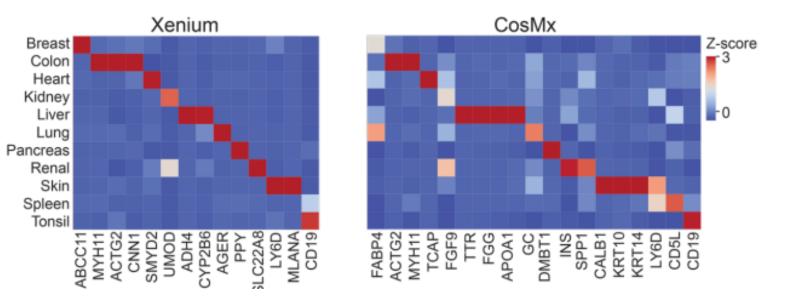
- Probe specificity: negative probe
 (experimental probe: does not present in human)
 (cf: Merscope: X)
 & negative barcode
 (computational barcode: algorithmically)
- On target / total
- above noise (2 S.D. > Avg)
- → Xenium is the best

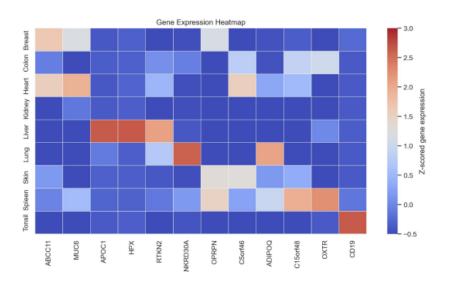


-Specificity assessment by TCGA and GTEX: gene-gene correlation

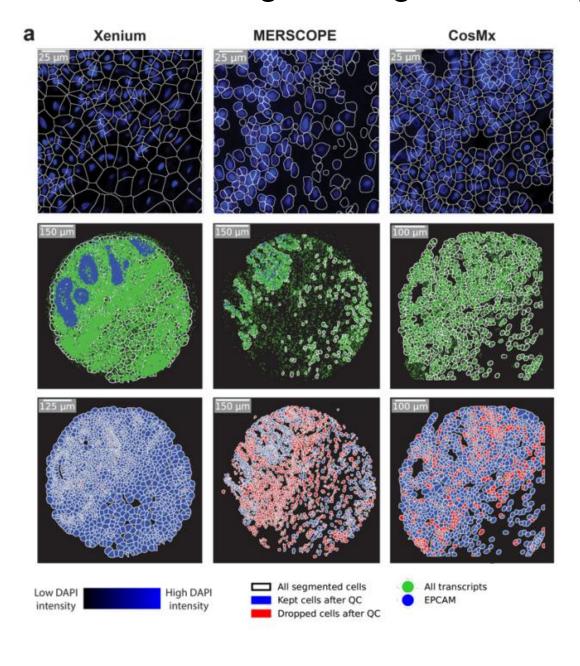
→ Cosmx: low exp: skewed

→ (low expression → non-specific binding high)

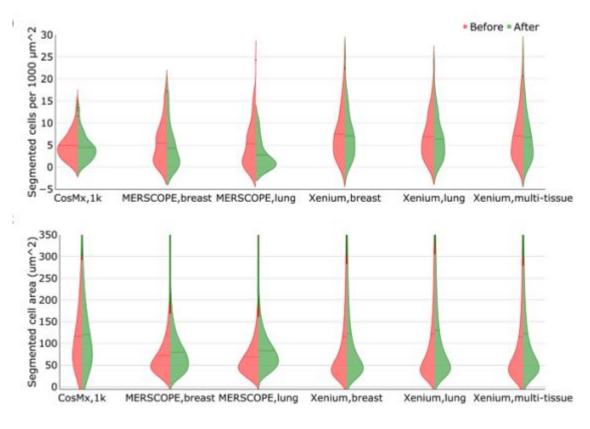


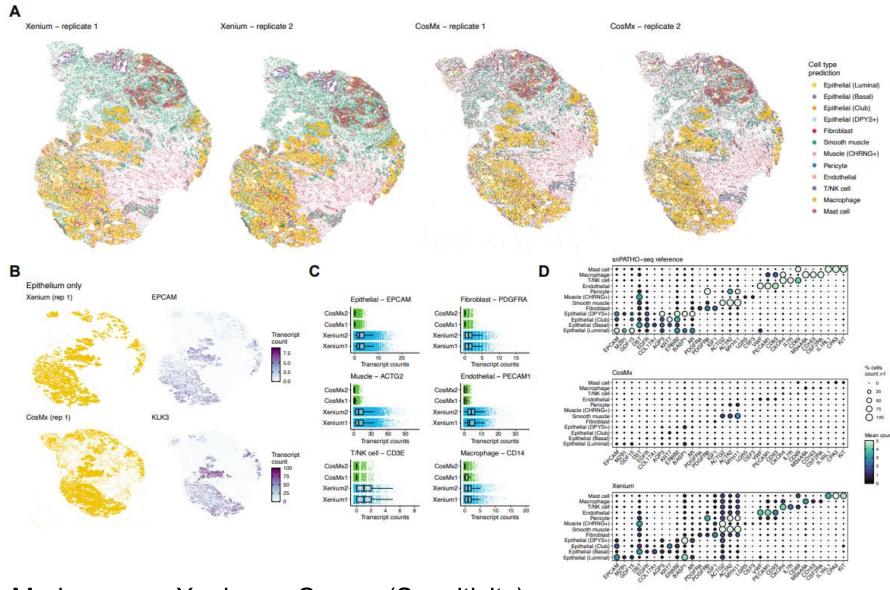


- *Specificity assessment by TCGA and GTEX
- Tissue-specific marker (> 20 fold btw other tissues)
- → Xenium > Cosmx



Xenium: large boundary (though less dropped cells after QC)





Marker gene: Xenium > Cosmx (Sensitivity)
Marker plot: Xenium is similar to snRNA-seq